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Abstract

The vision of ubiquitous computing as it was first outlined by Mark Weiser in the
late 1980s seems now, 30 years later to have turned into reality. Users have access to
an extensively growing number and variety of interconnected devices such as laptops,
smartphones, augmented and mixed reality headsets or tablets and many modern meet-
ings rooms are equipped with large-scale touch-enabled wall screens to support teams
during collaboration on complex tasks. The interaction between those devices is how-
ever not always as seamless as it was envisioned by Weiser. Collaborative tasks within
co-located teams frequently suffer from the awkwardness of manipulating, sharing, and
displaying information across multiple devices.

One way to break these barriers that is increasingly found in literature is to apply
concepts of spatial awareness for cross-device interaction. By utilizing proxemics between
co-located devices such as distance and orientation, new ways of interaction can be
developed. This thesis applies those concepts to a real-world scenario with a large-scale,
touch-enabled wall screen and multiple tablet devices being used for the collaborative
analysis of a supply-chain network visualized as a graph.

To support group activities in this scenario, two spatially-aware cross-device interac-
tions simplifying content transmission between wall screen and tablets were designed and
implemented: Details-on-Demand and Tablet-to-Wall-Screen. While Details-on-Demand
enables users to retrieve additional information of selected nodes on the wall screen on
their tablets, Tablet-to-Wall-Screen can be used to share the current tablet content on
the wall screen with an intuitive tilting gesture.

A novel approach was followed concerning the required device tracking technology.
Unlike many high-fidelity tracking systems, virtual reality hardware such as the HTC
Vive series offers consumer-ready, room-scaled tracking that is easy to set up and sold
for comparatively low cost. It was therefore examined whether Vive trackers although
being designed for VR applications can be utilized to provide sufficient device tracking
in the real-environment by mounting them on tablet devices in this scenario.

A technical evaluation collecting measures about accuracy, precision and reliability of
the implemented tracking solution as well interaction recall rates and latency measures
was conducted. During this evaluation, two different tracker mounting positions were
tested, the first with the tracker at the top edge of the tablet, the second with the tracker
on the backside of the tablet. Results showed that the Vive tracking provides generally
a high quality of tracking for both interactions in the real environment. Results for the
top mounting position of the tracker showed that there was no noticeable decline in
tracking quality compared to the results when only the tracker was used. The backside
mounting position proved to be not sufficient in this scenario.
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Kurzfassung

Ubiquitous Computing, wie es Ende der 1980er Jahre von Mark Weiser skizziert wurde,
scheint jetzt, 30 Jahre später, Realität geworden zu sein. UserInnen verfügen über eine
stark wachsende Bandbreite an Geräten wie Laptops, Smartphones, AR/VR-Headsets
oder Tablets. Viele Besprechungsräume sind mit Touchscreens ausgestattet, um Teams
bei der Arbeit an komplexen Aufgaben zu helfen. Die Interaktion zwischen diesen Ge-
räten ist jedoch nicht immer so nahtlos, wie es sich Weiser vorgestellt hat. Die Effizienz
kollaborativer Aufgaben in Teams leidet häufig unter der umständlichen gemeinsamen
Manipulation und Anzeige von Informationen über verschiedene Geräte hinweg.

In der Literatur wird zunehmend versucht diese Barrieren durch die Anwendung von
Spatial Awareness-Konzepten zu überwinden. Durch die Nutzung von räumlichen Daten
zwischen verschiedenen Geräten, wie z.B. Entfernung und Orientierung, können neue
Wege im Interaktionsdesign verfolgt werden. Diese Arbeit wendet diese Konzepte auf ein
reales Szenario mit einem Touchscreen und mehreren Tablets an, die für die kollaborative
Analyse eines graph-basierten Supply-Chain-Netzwerks verwendet werden.

Um Teamarbeit in diesem Szenario zu unterstützen, wurden zwei Spatial Awareness
nutzende, geräteübergreifende Interaktionen entworfen und implementiert, die die Über-
tragung von Inhalten zwischen Touchscreen und Tablets vereinfachen sollen: Details-on-
Demand und Tablet-to-Wall-Screen. Details-on-Demand ermöglicht es den UserInnen,
Details auf dem Tablet zu den auf dem Touchscreen ausgewählten Knoten anzuzei-
gen. Tablet-to-Wall-Screen wird dazu verwendet, den aktuellen Tablet-Inhalt auf dem
Touchscreen mit einer intuitiven Kippgeste zu teilen.

Für die dafür benötigte Tracking-Technologie wurde ein neuer Ansatz verfolgt. Im
Gegensatz zu vielen High-Fidelity-Tracking-Systemen bietet Virtual-Reality-Hardware
wie die HTC Vive-Serie einfach einzurichtendes, konsumentenorientiertes und vergleichs-
weise günstiges räumliches Tracking an. Es wurde daher validiert ob Vive-Tracker, die
eigentlich für VR-Anwendungen konzipiert sind, in diesem Szenario auch zum Tracking
von Tablets in der realen Umgebung verwendet werden können.

Die Arbeit wurde mit einer technischen Evaluierung abgeschlossen, bei der Daten zu
Genauigkeit, Präzision und Zuverlässigkeit der implementierten Tracking-Lösung sowie
zu Recall-Raten und Latenzzeiten erhoben wurden. Es wurden dabei zwei verschiedene
Tracker-Montagepositionen getestet, die erste auf der Oberkante des Tablets, die zweite
auf der Rückseite des Tablets. Die Ergebnisse zeigten, dass das Vive-Tracking im All-
gemeinen ein zuverlässiges Tracking für beide Interaktionen in der realen Umgebung
gewährleistet. Die Ergebnisse für die erste Montageposition zeigten, dass es zu keiner
merklichen Verschlechterung des Trackings kam verglichen mit nur dem Tracker. Die
zweite Montageposition erwies sich in diesem Szenario als nicht zufriedenstellend.
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Chapter 1

Introduction

1.1 Motivation
The term ubiquitous computing dates already back to the late 80s and early 90s when
Mark Weiser (1991) first envisioned a third computing wave after the PC era in which
computing happens anywhere and anytime with a large number of devices. By the
seamless integration of these devices into their environment they eventually disappear
for the user and are in fact not perceived as devices anymore. Instead, interaction with
them feels natural. Now, in the 2020s it appears that this vision turned into reality.
Ubiquitous computing seems now to be common and users have access to a wide variety
of different devices such as smartphones, tablets, laptops, large digital touch surfaces or
augmented and virtual reality headsets (Marquardt et al., 2011). Particularly concerning
mobile devices an extensive growth in the number and density of powerful mobile devices
can be observed (Rädle et al., 2014). Yet, there is an important detail missing to arrive at
the final stage as Weiser envisioned it. The potential of ubiquitous computing unfolds not
through a large number of sophisticated standalone devices, but through the interaction
between all of them. Although many modern meeting rooms are equipped today with a
wide variety of devices such as touch-enabled wall screens and mobile tablet devices to
supports teams with complex collaborative tasks, the interaction between those different
entities is frequently not as seamless and natural as the vision of ubiquitous computing
defines it. Compared to fluent and dynamic human conversation, informal information
exchange that is largely relying on those technologies often suffer from the awkwardness
of manipulating, sharing, and displaying information on and across multiple devices
(Marquardt et al., 2012). Although most of those devices are networked, interconnecting
and performing tasks among them is often tedious (Greenberg et al., 2011). In most
settings, devices are therefore still blind to the presence of other devices which obstructs
seamless cross-device interaction (Rädle et al., 2014).

To tackle these issues, a focus in research related to ubiquitous computing is to ex-
plore novel ways of interaction between different entities in a collaborative setting, such
as users, their devices and fixed entities such as large-scale wall screens (Weiser, 1991).
One promising strategy to mediate interaction between entities in such room-sized set-
tings is utilizing spatial awareness between those entities for creating new ways of fluent,
natural interaction (Marquardt et al., 2011). By using proxemic relationships such as
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1. Introduction 2

distance and orientation between entities, new ways of interaction for information ex-
change in collaborative group tasks can be developed, such as transferring content from
a mobile device used as personal workspace to a wall screen used as shared workspace
with gestures or coupling available interactions with the distance between devices. Such
interactions that are not relying on a user interface have the potential to dissolve bound-
aries between devices and the real-world so that ubiquitous computing takes one step
further into Weiser’s vision of the seamless integration of devices.

This Master’s thesis applies those concepts in a real-world scenario of the Josef-
Ressel-center for real-time visualization of supply chain networks in Eberstalzell, Aus-
tria, to demonstrate the benefits of utilizing spatially-aware interactions for the collab-
orative analysis of a graph-based supply-chain network in a cross-device environment
with a shared touch-enabled, large-scale wall display and multiple tablet devices used
as personal workspace.

1.2 Objectives
As briefly mentioned in the previous section, the work in this thesis is based on a real-
world scenario from researchers at the Josef-Ressel-center for real-time visualization of
supply chain networks whose work is described in more detail in subsection 3.1.1. One
of their research priorities is to gain a deeper understanding of supply-chain networks
by the structural and visual analysis of those networks to identify critical parts and
bottlenecks in the network so that information for fault prediction and impact analysis
can be derived. For this purpose, an interactive supply-chain network prototype operated
on a touch-enabled wall screen that visualizes the network as a graph that can be
manipulated was developed before the start of this thesis. To improve sense-making for
researchers using the prototype, the first objective was to enhance the existing prototype
by additional measures and manipulation facilities, so that more questions about the
network could be answered during the explorative analysis of the network.

Work on such rather complex analysis tasks is frequently performed as a team in
which coupling styles in collaboration between team members change frequently (Tang
et al., 2006). For instance, sub-tasks are often performed individually and results are
merged regularly on a shared workspace, such as the wall screen. This requires intuitive
facilities for sharing content between different devices the team is using during analysis
as the task of the team is already complex enough and informal information exchange
should not put additional cognitive load on the team (Marquardt et al., 2012). The
main objective of this thesis was therefore to apply the concepts of spatial awareness
to the given scenario and to demonstrate the benefits of spatially-aware interactions
in cross-device collaboration by designing and implementing spatially-aware interaction
techniques that allow users enable a natural and fluent exchange of information between
wall display and mobile devices.

Cross-device interaction involving multiple users with mobile devices and a wall
screen is a field of increasing research and multiple related prototypes each focusing
on other key aspects can be found in literature. For instance, GroupTogether which is
further described in subsection 2.2.1 focuses on the detection of social encounters(so-
called f-formations) between users by tracking users and their devices by fusing tracking
data from an array of overhead Kinect cameras, radio modules attached to mobile
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devices and accelerometer data. Depending on the proxemics between users, mobile
devices and a wall screen, different spatial interactions for content transmission are
available. GraSp on the other hand (see detailed description in subsection 2.2.2) focuses
primarily on different spatially-aware interactions between a tablet tracked with Vicon
infrared markers and a large-scale wall screen for selection, exploration and manipulation
of graph data.

For acquiring the required positional and orientational data of devices and users to
gain spatial knowledge about entities, a vast variety of different tracking technologies
of which an overview is provided in section 2.3 can be found in literature. Many of
those technologies face problems in certain areas, such as a high level of noise (Kubo
et al., 2017) or delivering only coarse-grained spatial data (Marquardt et al., 2012).
Commercial high-fidelity tracking technologies with high accuracy such as the infrared-
marker based tracking from Vicon often require an extensive hardware infrastructure
and come at high cost (Wilson & Benko, 2010). However, the increasing availability of
consumer virtual reality equipment such as the HTC Vive offers novel ways of tracking as
it is shipped with a with a room-scale tracking system, called Lighthouses (Niehorster et
al., 2017). In contrast to highly-specialized commercial tracking systems, the lighthouse
tracking of the HTC Vive (see details in subsection 2.4.1) is a consumer-ready tracking
system that is not difficult to set up and comes as comparatively low cost (Dempsey,
2016).

A further interesting feature of the HTC Vive are the Vive trackers that can be
attached additional artefacts like gaming accessories providing positional and orienta-
tional data just like the controllers so that they can be integrated into a virtual reality
application. Although designed for VR applications, these Vive trackers might be able
to close a gap for tracking systems being used in the real environment as they promise
a high level of accuracy across six degrees of freedom, low acquisition costs and setup
without extensive hardware instrumentation. Therefore, this Master’s thesis should an-
swer the question whether Vive trackers being actually designed for virtual Reality can
be utilized for implementing natural and intuitive spatially-aware interactions between
mobile devices and a wall-display in the real environment. Furthermore, the question
whether the Vive tracking provides a sufficient level of accuracy, precision and relia-
bility to successfully implement spatially-aware demonstrator interactions in the given
scenario should be answered. Finally, although the Vive tracker does not add much
weight (see details about weight and dimensions in Figure 2.4.1) when it is attached
to a tablet, it is relatively large and might disrupt the user during usage of the tablet
depending on the tracker mounting position. A third objective was therefore to evaluate
different mounting positions of the tracker on the used tablets. This should answer the
question which of the evaluated mounting positions provide an acceptable level of ac-
curacy, precision and reliability and which of the tested mounting positions works best
in terms of tracking, performance and effectiveness.

1.3 Approach
During informal interviews with the researchers at the Josef-Ressel-research center and
representatives from industry partners, the required adaptions for the supply-chain-
network prototype to improve sense-making were sketched and implemented to fill the
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gaps in the existing protoype. These were afterwards informally evaluated together with
the researchers at the Josef-Ressel-center. For the main objective to apply spatially-
aware interactions on the given scenario to improve collaboration between users and
their devices, a user-centered design process was adapted. To avoid being biased by
different hardware capabilities, a variety of different interactions independent from the
possibly used hardware was sketched together with fellow students. These sketches were
afterwards evaluated together with research staff at the Josef-Ressel center and the Hive
research group to identify those which would provide the largest benefit for users in the
given scenario. As one the biggest pain points identified during interviews and also in
literature was the lack of an intuitive facility to exchange content in an ad-hoc manner
between mobile devices and the wall display, two interactions - Details-on-Demand and
Tablet-to-Wall-Screen - were selected for implementation.

With the selection of Vive trackers as tracking technology, the spatially-aware func-
tionalities to be integrated into the existing prototype were modularized into two re-
usable components: as web socket server application handling the required communi-
cation and distribution of events between devices and a Unity application that triggers
the spatial events required for the defined interactions by tracking the mobile devices
with Vive trackers. The Unity application was designed to support two different tracker
mounting positions that were later compared during evaluation. After the integration
of these components into the existing prototype that was designed as an Angular web
application, functional testing and presenting the prototype at different occasions, a
comprehensive technical evaluation of the implemented system was conducted to an-
swer the remaining research questions defined in the previous section.

To assess whether accuracy, precision and reliability of the implemented interactions
in the scenario were sufficient, data about positional accuracy, the intensity of jitter,
sensor drift and the frequency of loss of tracking were collected during technical evalua-
tion. To allow comparisons between different tablet mounting positions and the general
influence of the tablet on tracking, experiments were repeated for both tracker mounting
positions and only the tracker without tablet to have a reference where possible. The
influence of tracking on the effectiveness and reliability of the implemented interactions
was then assessed by collecting recall rates and latency measures for both implemented
interactions and tracker mounting positions. To have a more comprehensive view about
usability and user experience of the implemented interactions, it was planned to eval-
uate the prototype during a user study as part of an accompanying Master’s thesis.
However, this was unfortunately not possible during the Covid pandemic in 2020.



Chapter 2

Related Work

2.1 Design Aspects of Spatially-Aware Interactions

2.1.1 Types of Spatial Relationships
To deploy systems that utilize seamlessly integrated spatially-aware interactions as en-
visioned by Weiser, it is first necessary to develop a model of types of proxemic re-
lationships between entities. By operationalizing these relationships between entities,
they become measurable and can be used to define thresholds for spatially-aware inter-
actions (Greenberg et al., 2011). A systematic approach to categorize the relevant data
for ubiquitous computing was undertaken by Greenberg et al. (2011), who developed
five dimensions of proximity: distance, orientation, movement, identity and location.

Distance The study of distance and its conscious and unconscious use during inter-
action between two or more entities originates from the sociological field and analyzes
not only pure interpersonal distance, but also social and cultural backgrounds of the
use of distance (Hall, 1966). Proxemics in ubiquitous differ in that they have to cover
inter-entity, rather than only interpersonal distance, where an entity can be formed by
people, digital devices or other artefacts (Greenberg et al., 2011). While distance is
commonly perceived as a continuous measure such as the distance of a device to a wall
screen in centimeters, it can also be expressed in discrete measures in the context of
ubiquitous computing (Greenberg et al., 2011). This is achieved by dividing up con-
tinuous distance between entities into a certain number of zones (Prante et al., 2003;
Vogel & Balakrishnan, 2004). Entities can then be classified by the zone in which they

Figure 2.1: The five types of proxemic relationships between users and devices(Greenberg
et al., 2011)

5
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are located relative to another entity, which in the simplest case can be a binary value
expressing that the entity is or is not located in the same room (Greenberg et al., 2011).

Orientation Similar to distance, orientation between entities can be described in
continuous as well as in discrete measures. While the relative pitch, roll and yaw angle
of an entity to another entity is a common example for continuous orientation data,
discrete measures could be whether or not an entity is facing towards another entity
(Greenberg et al., 2011). Example applications utilizing orientation between entities
include adapting visualizations depending on whether the user is looking at a wall
display (Vogel & Balakrishnan, 2004) or the activation of certain interaction modalities
as soon as entities are oriented towards each other in a certain way (Marquardt et al.,
2012). To use orientation in a meaningful way for spatially-aware interaction, one side
of the entity should be commonly perceived as the front of the entity by the users
(Greenberg et al., 2011).

Movement describes the distance and orientation towards another entity over time.
Data about entity movement enables developers to adapt interactions to the speed or
direction of movement, for instance whether the user is moving towards a display or
away from it (Greenberg et al., 2011).

Identity is used to uniquely recognize an entity. However, there exist different degrees
of uniqueness. The exact identity of an entity might be uniquely identified by an ID,
while weaker identity measures allow to uniquely identify the entity type or only to
distinguish between two different entities independent of their type (Greenberg et al.,
2011).

Location adds meaning to the first four entity measures, as these often require the
physical context in which the entities are found (Greenberg et al., 2011). With location
measures, additional context can be added, so that the presence of an entity within a
fixed feature such as a room can be sensed. Further examples of fixed features are a
whiteboard, the entrance to a specific room and in many cases also a large-scale wall
screen (Brudy et al., 2019). They define boundaries and are used by human entities to
organize their activities around these boundaries (Hall, 1966). Semi-fixed features that
have usually a static location, but can be moved without much effort such as chairs can
change location context and entity behaviour (Hall, 1966).

2.1.2 Proxemics Between Co-located Entities
Whenever a group of co-located people gathers to have an engaged interaction between
another, they arrange themselves - not always consciously - in way that serves the cur-
rent purpose of the conversation (Ciolek & Kendon, 1980). This creates a shared space
in which the group can exchange their communicative transaction by using words, ges-
tures, facial expressions and possibly additional artefacts (Kendon, 2010). The spatial
characteristics of these encounters do not follow strict rules, instead they vary in shape
and distance between participants. In particular, these factors depend on the dynam-
ics of the interaction, the types of inter-personal relationships and the setting of the
gathering (Ciolek & Kendon, 1980).

The theory of Transaction Segments helps to better understand how the shared
interaction space in a gathering is created. It describes the observation that for individual
activities, people use their surrounding space in a selective, intentional manner to fit it
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to the requirements of the activity (Ciolek & Kendon, 1980). The extent to which the
surrounding space is consumed is not only dependent on physiological factors such as
body size and posture, but also on the type of activity. While the transaction segment of
a person watching TV while sitting on the couch typically consumes significantly more
space in the environment, for focused activities that require a high level of concentration
such as reading a textbook it is likely that only a small, narrowed transaction segment is
used (Ciolek & Kendon, 1980). Usually, the person who created the transaction segment
uses this territory exclusively and other persons intruding this transactional segment
can cause discomfort, annoyance or withdrawing (Ciolek & Kendon, 1980).

While for individual activities, people usually try to avoid overlaps between their
transaction segments, they discard this behaviour for focused face-to-face interactions
and behave exactly the opposite way. Instead, they establish a formation that enables
eye-to-eye contact and try to merge their individual transaction segments to a shared
interaction space (Ciolek & Kendon, 1980).

At this stage, f-formations that describe a distinctive spatial arrangement of peo-
ple starting direct engagement with each other help to explain the characteristics and
nuances of these gatherings (Kendon, 2010). An exemplary f-formation is included in
Figure 2.2 a). The center of this f-formation that is surrounded by the participating
people looking at each other is called the o-space (Ciolek & Kendon, 1980; Kendon,
2010). This territory is formed by the overlap of the participants’ transaction segments
and is maintained and protected from internal and external disturbances by all partici-
pants (Ciolek & Kendon, 1980). It represents the shared platform for the main activity
of the occasion and is used for the exchange of social transactions (Kendon, 2010).
Physical artefacts such as paper documents or mobile devices held by the participants
can become part of an o-space and are often used as a supplementing communication
medium within it (Marquardt et al., 2012). These artefacts are commonly perceived as
an extension of the holding person’s transactional segment (Kendon, 2010).

The boundary of the f-formation is represented by the p-space, which is the roughly
circular area in which the participants of the interaction arrange their bodies during
the encounter (Ciolek & Kendon, 1980; Kendon, 2010). Its width is roughly defined by
the depth of the participant’s body and is estimated between 45 and 65 centimeters
(Ciolek & Kendon, 1980). This space is also used as a retreat area for body parts or
artefacts that a member of the formation wants to move out of the o-space, for instance
after finishing to show the other group members content on a mobile device (Marquardt
et al., 2012). The total diameter of an f-formation rarely exceeds 1.7 meters, as this is
the maximum distance for comfortable face-to-face conversation (Dunbar et al., 1995).

F-formations are not a rigid structure, they can change during their life-cycle. For
instance, 2-person encounters frequently start as a face-to-face communication and turn
into a more open L-shaped formation after a while - they adapt to the current stage and
purpose of the interaction (Kendon, 2010). As Figure 2.2 b) illustrates, face-to-face, side-
by-side and corner-to-corner (L-shaped) orientations between participants are common
patterns for f-formations and are adjusted for different collaborative tasks: competitive,
collaborative, or communicative, respectively (Sommer, 1969).

The current shape of the formation has also an influence on outsiders who are cur-
rently not participating in the formation, but might still belong to the group. These
people are located in the r-space, which is the close area that surrounds the f-formation
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Figure 2.2: a) Typical round-shaped f-formation of interacting people with shared o-
space, which is delimited from entities in the not participating r-space by p-space (Kendon,
2010); b) f-formation demonstrating the use of a device in o-space and the change of
participants. Different shapes of f-formations on the right (Marquardt et al., 2012)

(Kendon, 2010). It can be seen as a to some extent public transition area, that enables
people to join or leave the f-formation (Ciolek & Kendon, 1980). While in a rather
open, L-shaped f-formation it is relatively easy for a new participant to join, it is in
more closed formations like face-to-face shapes often necessary to allow a new partici-
pant to enter the p-space first by making room for him or her (Ciolek & Kendon, 1980).
Although group size varies, it tends to remain small. 95 % of freely forming groups do
not exceed 4 persons and more than the half consists of only two participants (Dunbar
et al., 1995).

An important final note is the concept of f-formations is not limited to people. As
indicated by Marquardt et al. (2012), devices as spatial extensions of people can also
form entities in a f-formation and transition between the different spaces. Semi-fixed
and fixed devices such as wall screens can also become part of the f- or o-space if the
participants gather around it (Marquardt et al., 2012).

2.1.3 Transitioning Between Interaction Phases
Gaining knowledge about the spatial relationships such as distance and orientation
between devices or users enables system designers to create a fluid transition from
implicit to explicit interaction, for instance in parallel to the distance of a wall display. By
sensing user or device proximity and orientation, spatially-aware systems can determine
intentions of the user (Shell, Selker, et al., 2003).

A social sciences concept that is often adapted in HCI in this context are social zones
that are categorized by the physical distance between people ranging from intimate (0-
50cm), personal (1m), social (4m), and public (>4m) (Hall, 1966). By interpreting
devices that people carry with them as an extension of the carrier’s entity, people’s
will to interact with other entities can be derived from the proxemics of these devices
(Marquardt et al., 2012). For instance, Hello.Wall coupled available interactions be-
tween users and an ambient display with the distance between the ambient display and
so-called Viewport devices which users are carrying with them (Prante et al., 2003). By
default, the ambient display shows general information. If a viewport comes into reach,
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Figure 2.3: Interaction phases transforming from implicit to explicit and public to per-
sonal interaction(Vogel & Balakrishnan, 2004)

the system’s ambient display changes to distinctive light patterns and additional infor-
mation is displayed on the viewport that just entered this so-called interaction zone. As
soon as the user carrying the viewport comes closer and stops directly in front of the
ambient display, each single item on the ambient display can be controlled by the user
(Prante et al., 2003).

This concept was extended to a framework for interaction phases between users and a
wall screen that uses additional key variables, such as the user’s attention and his or her
orientation towards the wall screen (Vogel & Balakrishnan, 2004). The authors define
four different interaction zones dependent on distance to and body or head orientation
towards the wall display. The closer the distance or the higher the attention of the
user interpreted by body and head orientation is, the more explicit and personal the
interaction between user and wall display gets. In detail, these four zones are specified
as follows and physically arranged as in figure Figure 2.3:

Ambient Display Phase: In this phase, users spend no significant attention to the
wall screen and are located rather far away from it. The wall screen is in a neutral state
acting as an ambient information display.

Implicit Interaction Phase: This phase is entered when the system detects through
changing body position and orientation that a user is starting to take notice of the wall
screen. At this stage, subtle notification can be used to draw the users attention to
urgent information.

Subtle Interaction Phase: As soon as a user stops intentionally in front of the wall
screen while still maintaining a certain distance (about 1m), the subtle interaction phase
is entered. More personalized information can be displayed on parts of the screen that
are close to the users viewing direction, while the remaining screen area is still usable
by other persons passing by. This zone was not considered in the original model of
Hello.Wall (Prante et al., 2003).

Personal Interaction Phase: After the user made a decision and moved closer to the
screen, the personal interaction phase is entered. This phase represents the most explicit
and personalized stage of interaction that is typically controlled by touch input, unlike
in the subtle interaction phase where gestures are more suitable for seamless interaction
because of the physical distance.

The transition between these phases enables co-located users to share parts of the
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screen easily while working in differently personalized stages (Vogel & Balakrishnan,
2004). Furthermore, visual clutter is reduced as details are only presented at a closer
distance when needed.

2.2 Related Prototypes Utilizing Cross-Device Interaction with Wall
Screens

2.2.1 GroupTogether

F-Formations and Micro-Mobility

GroupTogether is a prototype that assumes a similar setting for cross-device collabora-
tion as outlined in the introduction and demonstrated the potential for fluid interaction
modalities between multiple, co-located users, their tablet devices as well as a wall screen
(Marquardt et al., 2012). As guiding principles for implementing several cross-device in-
teraction techniques, the prototypes utilizes the idea of f-formations as discussed in
chapter 2.1.2 and introduces the term of micro-mobility.

The idea behind micro-mobility is that the way a user orients an artefact such as
a tablet towards another person gives subtle hints about the intentions of the user
holding the artefact (Marquardt et al., 2012). By collecting these spatial data it can
be derived what should or should not be shared with the other person. An exploratory
user study with collaborative, competitive and individual tasks for the participants was
conducted to identify common patterns in spatial device-to-people and device-to-device
relationships. From the observations, eight behavioural patterns were derived and used
to design four different interaction techniques to share content between users standing
together in a f-formation. Two of them will be analysed in the following section.

Interactions

Both interaction techniques have in common that they implement fluid methods of
content movement between devices and that they utilize the observation that users who
want to show content of their tablet tend to tilt the device towards the other user
(Marquardt et al., 2012). The insensitivity of tilting and reorientation of the device is
dependent on the current communicative need.

Tilt-to-preview: This interaction technique additionally takes advantage of the obser-
vation that users often tend to point on content that they refer to during communication.
If two or more tablets are located next to each other in o-space, users can send a copy of
an item by holding it with the finger on the sending device and by simultaneously tilting
the tablet slightly towards the receiving device (Marquardt et al., 2012). On the receiv-
ing device, a small semi-transparent preview of the content is displayed at the incoming
edge of the screen and the receiving user can decide whether to keep a permanent copy.

Mirror-to-Screen: By tilting the sending tablet almost vertically (at least 70 degrees)
towards another tablet, users can open a full-screen copy of the sending device on the
receiving device (Marquardt et al., 2012). This interaction is significantly less subtle, as
the content shows up as full-screen copy on the receiving device, but has less transaction
costs as no touch interaction is necessary, neither on the sending nor on the receiving
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Figure 2.4: Tilt-to-Preview compared to Mirror-to-Screen. In Tilt-to-Preview user
touches item to share and tilts the device towards the receiving device (a), receiving
device user decides what to do with the copy (b). With Mirror-to-Screen, a full-screen
copy is opened on the receiving device after tilting the sending device vertically (right
picture) (Marquardt et al., 2012)

tablet.
Both interactions consider the behaviour patterns of incidental tilting and avoidance

of persistent spatial invasion (Marquardt et al., 2012). Incidental tilting refers to the
observation that devices are often tilted unintentionally and tilting alone might not
always be an unambiguous hint for the desire for content sharing. This problem was
addressed by introducing thresholds for the tilting gesture. While Tilt-to-preview is
activated after a tilting threshold of 10 degrees (which was classified by the authors
as well beyond the incidental tilting boundary), the face-to-mirror gesture is activated
after tilting the sending tablet by at least 70 degrees. Avoidance of persistent spatial
invasion on the other hand refers to the behaviour that users try to avoid interacting
directly with tablets of other users, because it could be interpreted as an intrusion of
the other user’s territory. This is addressed in both interactions by removing the need
for touching other users’ tablets and by giving the receiver the possibility to reject an
incoming item. This can be achieved either by moving the receiving tablet out of the
o-space or in the case of Tilt-to-Preview also by simply not keeping a copy of the item.

It is important to note that the Mirror-to-Screen technique is not necessarily limited
to tablets as target device, as f-formations can also contain fixed elements like wall
screens (Ciolek & Kendon, 1980). This was demonstrated by adding a Hold-to-Mirror
technique in which users could form a f-formation that encompasses a digital whiteboard
in the room (Marquardt et al., 2012). Similar to the Mirror-to-Screen technique, users
could show a full-screen copy of their tablet content on the digital whiteboard by tilting
their device towards the wall screen.

Implementation

For the detection of user formations, two ceiling-mounted overhead Kinect cameras
looking downwards were used (Marquardt et al., 2012). With data from the depth
camera it was possible to detect single persons and their formations (face-to-face, side-
by-side, corner-to-corner) via shoulder-head-shoulder patterns as illustrated in figure
Figure 2.6. The data from the depth camera is decomposed into three different depth
bands, in which the topmost represents the head, the second depth band the shoulder
region and the lowest depth the torso and devices. By the analysis of each depth band,
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Figure 2.5: Hold-to-Mirror gesture: full-screen copy of tablet screen is shared on wall
screen after tilting tablet display towards wall screen (Marquardt et al., 2012)

Figure 2.6: Detection of a standing person by recognizing shoulder-head-shoulder-
pattern from depth data (left) and recognition if person is holding a device in o-space
(right) (Marquardt et al., 2012)

the system can determine in which direction the user is standing or looking, and whether
there is currently a tablet used in o-space by the person.

The actual identification of devices and which user is holding them is established by
adding Qualcomm Short Range Communication Technology (QSRCT) radio modules
sending at 8GHz that are attached to both sides of the wall screen - left and right - and to
the back-side of the tablet (Marquardt et al., 2012). By triangulation of the radio signal,
the 3D position of each tablet can be determined within an accuracy threshold of 10cm at
90 % confidence. The pairing between devices and users detected by the Kinect camera
is established by three point trilateration where the range-finding request signal from
the tablet radio module is measured by three fixed QSRCT stations. The intersection
of the resulting three signals after Kalman filtering is interpreted as device location and
matched to the closest user according to the Kinect data. With these calculations, the
proxemics between devices and users are available for the concept of micro-mobility.

Evaluation

The prototype has not been tested in an extensive user study, only an informal eval-
uation with 6 participants was conducted in which the participants tried several ba-
sic information-sharing and viewing tasks after a short introduction (Marquardt et al.,
2012). Afterwards, a survey with several not further specificed 7-point Likert scale ques-
tions and a discussion about best and worst things about each technique was performed.
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Figure 2.7: Schematic prototype setup with Kinect cameras on the ceiling and QSRCT
radio modules at the wall screen (Marquardt et al., 2012)

Key observations that were also approved by the Likert questions were that the partic-
ipants learned quickly how to use the interaction techniques and that they encountered
a good user experience as the interactions were intuitive, quick and easy to perform.
Negative feedback mostly related to physiological issues. Several participants had issues
holding the tablet in one hand while touching an item on the tablet with the other
hand. Others found it difficult to tilt the tablet by such a high degree or experienced
fatigue during their testing session. Except for the adjustment of the tilting angle, it
was concluded that this was more a restriction of the rather bulky tablets (1.16 kg, 312
x 207 x 17 mm) themselves than the implemented interaction techniques.

2.2.2 GraSp
GraSp (“Graphs in Space”) is a prototype specifically designed for graph visualization
and interaction that is based on a similar setting as this thesis by deploying spatially-
aware interactions between a large-scale wall screen and co-located mobile devices op-
erated by multiple users in a collaborative setting (Kister et al., 2017). Consequently,
not only the hardware environment, but also the application domain is related to the
project of this Master’s thesis. The idea behind the prototype was to move a typically
much space consuming node-link graph visualization out of the boundaries of a classic
mouse/keyboard desktop environment onto a large-scale wall screen (Kister et al., 2017).
This supports sense-making for users as the increased available space can be used as a
larger external memory(Andrews et al., 2010). Physical navigation in front of a large
wall screen can also improve performance of the navigation task compared to virtual
navigation(Jakobsen & Hornbæk, 2015). Furthermore, the rather limited space available
on a mobile device for displaying information can be compensated to a large degree by
using the wall screen as shared workspace for the node-link visualization (Kister et al.,
2017). The use of mobile devices on the other hand offers new input modalities such as
touch input or device re-positioning, which in this case in fact are essential ways of in-
teraction, as traditional input modalities like mouse and keyboard are rather unsuitable
due to the increased size of the wall screen (Kister et al., 2017). However, compared to
standard touch input, utilizing the spatial movement of a device for navigation tasks
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for example has the advantage of increased task execution speed (Spindler et al., 2014).
Thus, the approach of the authors was to combine the large available space on the wall
screen with the mobility, flexibility and interaction modalities of the mobile devices that
are available when their position and orientation are known (Kister et al., 2017).

From an information visualization perspective, two major visual representations are
used in this work: node-link diagrams as already discussed and adjacency matrices
(Kister et al., 2017). Graphs tend to get rather complex and visually cluttered when
they exceed a certain size and there is a vast amount of research concerning challenges
in graph visualizations (Hadlak et al., 2015). This requires sophisticated graph inter-
action techniques for selection, navigation and manipulation to maintain sense-making
for users (McGuffin & Jurisica, 2009). GraSp addresses this challenge by implementing
multiple spatially-aware cross-device interactions. These interactions were derived from
two real-world scenarios. The first assumes a group of biologists exploring a graph that
is visualizing co-occurrences of cancer diseases and certain genes, while the second sce-
nario describes the analysis of a social network as by marketing specialists (Kister et al.,
2017).

Interactions

A total number of 11 graph interaction techniques were implemented to support the
two scenarios. These contain explicit as well as subtle techniques based on the tracking
of the mobile devices and can be roughly categorized into the following tasks (Kister
et al., 2017):

• close-up extracts from a sub-section of the graph data shown on the wall screen
• Increasing or decreasing the level of detail in visualized data
• alternative visualization of data
Mobile focus view section: with the tracked position and orientation of the mobile

device, a sub-section of the graph on the wall screen can be selected for further inter-
actions (Kister et al., 2017). The area that is currently focused on the wall screen with
the tablet is marked by a black rectangle on the wall screen whose position is constantly
updated when the tablet is moving (Figure 2.8). This interaction can be performed in
two different modes: orthogonal and perspective pointing (Kister et al., 2017). When
using orthogonal pointing, only the position of the device and its orthogonal projection
on the wall, but no orientation data are used for updating the rectangle position. This
allows a flexible hold of the device, but requires rather much movement by the user to
change the rectangle’s position on the wall screen. Perspective pointing on the other
hand utilizes additionally device orientation and shows the rectangle at the position on
the wall screen where the front of the mobile device points to (Kister et al., 2017). The
rectangle position can be frozen as soon as the area of interest is selected.

Data selection: the sub-section of the graph within the rectangle on the wall display
to which the mobile device currently points to is also shown on the mobile device’s
display. This enables the system to perform all following selection techniques consistently
on both devices, mobile device and wall screen (Kister et al., 2017). A single node can
be selected by tapping it on either the mobile device or the wall screen (Figure 2.8 a)),
while a group of nodes and links can be selected with an encircling lasso gesture on again
either the mobile device or the wall screen (Figure 2.8 b), d)). The whole sub-section of
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Figure 2.8: Different selection and interaction techniques from GraSp: a) details-on-
demand view after touching a node on the wall screen b) Selection of multiple nodes
on wall screen with lasso gesture c) Perspective Pointing to focus a sub-section of the
wall screen graph on the mobile device d) lasso gesture on mobile device for selection of
multiple nodes (Kister et al., 2017)

the graph currently encircled by the rectangle can as well be selected with a button in
the UI of the mobile device (Kister et al., 2017). These selections are all handled on a
user-basis.

Details on Demand: After selecting a node or a group of nodes and links in the graph
on the wall screen, the mobile device closest to the selection area on the screen changes
to a detail view as illustrated in Figure 2.8 a) and shows additional data based on the
selection on the screen(Kister et al., 2017). If a single node was selected, the detail view
shows the attributes of the selected node. In the social network scenario these are for
instance age, gender and location of the selected person.

Additionally to these selection techniques, the level of detail of the graph on the
wall screen is adjusted depending on the euclidean distance between a mobile device
and the wall display (Kister et al., 2017). For instance, additional labels and pictures
are shown on the wall screen in the area where a mobile device approaches the screen
and hidden as soon as the mobile device is not close anymore. If two different devices
are in proximity in the same area of the wall screen, the higher level of detail that is
triggered by the device closer to the screen is applied.

Encode and manipulate in alternative representation: to support the interpretation
of graph data, an adjacency matrix visualization of the current graph selection as in
Figure 2.9 b) has been provided on the mobile device (Kister et al., 2017). This view
is coordinated with the current selection on the wall screen of the mobile device and
the adjacency matrix is constantly updated when the selected nodes and links on the
wall screen change. As with the mobile focus view section, the selection on the wall
screen can be frozen to stop continuous updates of the adjacency matrix if a certain
area should be focused (Kister et al., 2017). The adjacency matrix is furthermore used
to edit the current section of the graph by tapping single cells or dragging multiple cells
in the matrix to add or remove edges. This is less tiresome than connecting two possibly
far-away nodes on the wall screen by dragging (Kister et al., 2017).

Connect and adjacency - Bring Neighbors Lens: with a variation of the Bring Neigh-
bors Lens (Tominski et al., 2006), neighbor nodes of a node of interest can be visualized
on the display of the mobile device. After selecting the node of interest on the wall screen
with the the mobile device, the the subsection of the graph containing the selected node
and its adjacent nodes are shown on the mobile display (Kister et al., 2017). The lens
for selecting the node of interest uses the same mechanism as for the mobile focus
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view section interaction. By moving a rectangle on the wall screen either by orthogonal
or perspective pointing with the device, the node for which the neighbors should be
highlighted can be selected.

Attribute-based data filtering: The complexity of the graph data can be reduced by
several ways of filtering nodes and links by certain attribute values or value ranges. One
way to achieve this is to use the prototype’s attribute filter lens. In the UI of the mobile
device a filter range - for instance, a certain age range in the social network - can be
configured. Afterwards, the rectangular lens also utilized by the bring neighbors lens
and focus view selection is re-used to show in the graph on the mobile device only nodes
and links that are within filter range (Kister et al., 2017). This allows a comparison
with the still unfiltered graph section within the rectangle on the wall screen.

If the distribution within value ranges is relevant, body-relative range filtering or a
sieve-filter tool can be used (Kister et al., 2017). Unlike the previous discussed interac-
tions, these two filtering interactions are decoupled from the graph on the wall screen
and are used exclusively on the mobile device for individual exploration activities. To
use body-relative range filtering, the user first defines value ranges of interest such as
age groups. To browse through these ranges, the user holds the mobile device horizon-
tally and moves it from left to right and vice versa. The currently selected value range
changes according to the left-right movement and the graph for the currently active
value range is displayed on the mobile device (Kister et al., 2017). The currently visible
graph can be brought to focus by moving the mobile device vertically down. A more
playful example for the analysis of value distributions is the sieve filter tool. Similar to
body-relative filtering, different value ranges such as age groups (e.g. 12-20, 21-30) are
first defined with a slider (Kister et al., 2017). After the mobile device is rotated by the
user, a physics simulation showing how all nodes fall into their according value range
bucket is started. Through the spatial distribution of nodes on the mobile device screen,
dominant age groups can be identified quickly, while single nodes are still visible.

Implementation

The prototype including the user interfaces on the wall screen and mobile devices was
developed with Python using several additional libraries such as libavg as user interface
framework, pymunk for physics simulation and NetworkX for graph data and algorithms
(Kister et al., 2017). The social network dataset was acquired by an anonymized export
of a facebook account and linking it with face images from the Chicago face database(Ma
et al., 2015), while the human decease network was made available by Goh et al. (2007).
Data processing was performed in the GraphML format (Kister et al., 2017). A cen-
tral computer processes tracking data, input from the wall screen/mobile devices and
streams graphics to the mobile device (Kister et al., 2017).

In the technical setup, a large touch-enabled display wall with 4.86m width and
2.06m height as in Figure 2.9 a) was used, providing a resolution of 7680×3240 pixels
(Kister et al., 2017). As mobile devices, Google Nexus 7 tablets with four attached IR
markers were used that were tracked by the commercial 3D tracking system OptiTrack.
This outside-in tracking system uses an array of cameras that surround the tracked
area and emit IR light with photodiodes (Ribo et al., 2001). The IR markers that are
attached to the mobile device as shown in Figure 2.9 b) reflect the IR light emitted by
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Figure 2.9: a) GraSp hardware setup with large-scale wall screen and tracked mobile
devices b) mobile device equipped with Optitrack IR markers forming a unique geometry,
showing an adjacency matrix of the selected node link diagram subsection (Kister et al.,
2017)

the cameras and are positioned in a unique geometry on each device, so that a single
device can be identified. By a blob detection of the markers and the non-reflective
background of the camera image, markers can be identified and their 3D position can
be reconstructed by processing and merging the 2D images of all cameras in the array,
whose position is known (Ribo et al., 2001).

Evaluation

Based on the social network data set, the prototype was evaluated by a qualitative user
study with 9 participants (3 female, 6 male, aged between 22 and 35) with a background
in data visualization, but not necessarily graphs (Kister et al., 2017). Most participants
used touch-enabled devices on a daily basis, but had little experience with large-scale
wall screens. During an approximately 45 minutes lasting session, each participant was
introduced to possible tasks related to the data set and asked how she or he would try
to achieve a solution (Kister et al., 2017). Afterwards, each feature of the prototype was
demonstrated by the experimenter. The second part of the session was formed by five
large exploration tasks, which consisted of up to three sub-tasks in which the participants
were required to solve the tasks without assistance from the experimenter. This part
was recorded on video and a second experimenter took notes during the session. A
post-study questionnaire with seven questions assessing the techniques completed data
collection (Kister et al., 2017).

Overall, the participants proved to be very successful in solving the tasks (Kister
et al., 2017). Study observations showed that participants could be distinguished in
two groups of almost same size (Kister et al., 2017). The first group used both, the
wall screen and the mobile device equivalently and frequently switched between those
devices. They utilized the mobile device for detail views and mobile selections, while
the wall screen served as overview for the overall task. Unlike the other group, they also
made frequent use of tap or lasso selection on the wall screen. This second group on
the other hand was rather focused on the mobile device. Within this group, the wall
screen was mainly used as an overview, from which regions of interest were picked with
the mobile focus selection feature of the mobile device (Kister et al., 2017). Typically,
these participants were located 2-3m away from the wall screen and favored perspective
pointing with the mobile device over physical navigation in front of the wall.
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The collected feedback revealed that splitting up graph-related tasks among mobile
devices and the wall display by utilizing different visualizations simultaneously was
experienced as helpful by the participants (Kister et al., 2017). Especially the adjacency
matrix on the mobile device was frequently used as supplementary information source
for a selected sub-section of the graph on the wall screen. Well-perceived were also the
attribute filter and bring neighbor lenses. Several participants also liked the playful
character of some interactions such as the sieve filter tool (Kister et al., 2017).

2.3 Tracking Technologies Overview
Reliably tracking devices or users operating them forms the underlying basis for data
exchange between those devices that is crucial for cross-device interaction (Brudy et al.,
2019). These tracking systems have widely varying capabilities. While some systems
for instance provide 3D positions in space of tracked devices, others only support the
absolute distance between tracked devices (Brudy et al., 2019). The underlying tracking
technologies can be classified into two main categories: outside-in tracking and inside-out
tracking. While outside-in tracking uses sensors in the environment such as cameras or
radio base stations to track objects of interest, inside-out tracking utilizes sensors that
are directly built into or attached to the tracked device such as the Inertial Measuring
Unit (IMU) of a mobile device (Brudy et al., 2019). For both categories, several different
technological approaches exist as table Table 2.1 indicates. Inside-out tracking is rarely
used for user tracking, but very common in cross-device applications that do not require
3D locations and most research is built upon technologies utilizing acoustic, radio and
more recently optical sensor data (Brudy et al., 2019). In outside-in tracking, optical
solutions with depth or RBG cameras or a combination of those are the most dominant
approach (Brudy et al., 2019).

2.3.1 Capacitive Tracking
In comparison to other tracking technologies such as optical or radio-frequency-based
tracking, capacitive tracking seems to play a secondary role in research. For some specific
tasks however, capacitive tracking can provide a cost-effective alternative to technolo-
gies that require rather expensive hardware and more instrumentation such as optical
tracking. For instance, Pick-and-Drop (Rekimoto, 1997) enables users to move content
between two capacitive displays as if they were manipulating a physical object. By pick-
ing up the content on the source display with a pen and dropping it onto the target
display with the same pen, content can be moved between these two displays. The pen
has a unique ID that can be read when the pen is close enough to the display. The
unique ID enables use of multiple pens at the same time for co-located collaboration.
As the pen itself does not hold any data, a back-end software couples the pen Id with
the content to be moved that is stored on a network share (Rekimoto, 1997).

More recent work utilizes a pinch gesture across the screens of two mobile devices
lying on a flat surface to combine them together to a composite display across multiple
devices (Ohta & Tanaka, 2012). With the the direction of the finger movements and the
screen area affected by the cross-device pinching gesture, the way the two mobile devices
are arranged to each other can be calculated without additional tracking hardware. More
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Table 2.1: Categorization of tracking systems into different coarse-grained tracking tech-
nologies (modalities) and fine-grained types per major tracking category (outside-in vs.
inside-out) adapted from (Brudy et al., 2019). Papers column shows the number of pub-
lications that were classified into this category by the taxonomy, which gives a broad
overview about recent research.

Modality Type Papers

Outside-in tracking

capacitive capacitive 9

optical
depth camera 11
fiducial markers 5
marker based IR 2
RBG camera 7

RF-based radio(other) 2

Inside-out tracking

acoustic standalone 7
user-generated 5

capacitive capacitive 2
IMU IMU 1
magnetic magnetic 2

optical
fiducial markers 1
IrDA 1
RBG camera 3

RF-based
Bluetooth 2
NFC / RFID 3
radio(other) 2
WiFi 1

than two devices can be combined by repeating this procedure to form a larger, tiled
composite display.

2.3.2 Optical Tracking

Depth Camera

EyePliances (Shell, Vertegaal, et al., 2003) combine the IBM PupilCam with a computer
vision algorithm that senses user attention. With face recognition and an eye tracking
algorithm, the prototype can determine whether the user is currently looking at the
device to which the camera is attached to. The IBM PupilCam (Morimoto et al., 2000)
is a low-cost black-and-white camera with two near-infrared light sources arranged in
an inner and an outer ring for eye pupil detection in images and claims to be fast and
robust in comparison to other eye-tracking systems at the time of writing.

Fiducial Markers

To simplify the optical tracking of devices or other physical artefacts, those objects
can be equipped with visual markers that are relatively easy to detect with a camera
assuming that there are no occluding objects in the environment. An early and popular
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example for the application of fiducial markers in a tracking environment for augmented
reality is the hyperdragging technique (Rekimoto & Saitoh, 1999). It enables to show
additional annotations of tracked objects such as laptop computers, video tapes or
business cards on a flat table surface by projecting the content with a projector that
is mounted on the ceiling. Tracked mobile computers can also drag content from the
computer display onto the table surface to create seamless workspace. All objects are
tracked with a self-printed visual marker containing a 2D matrix code that is readable
from the top by a camera that is mounted next to the projector(Rekimoto & Saitoh,
1999). Creating additional markers is simple and cost-effective, as they can just be
printed on demand.

Infrared Markers

Early work with photodiodes that form the base for most infrared marker-based tracking
systems started in the 1990s such as the implementation of a range-finding algorithm
with light stripes that are detected by an array of photodiodes (Carley et al., 1990).

Meanwhile, there are several high-fidelity, commercial motion tracking systems avail-
able that use cameras to track markers reflecting infrared light emitted from the cameras,
such as Vicon or OptiTrack that was used for the GraSp for the prototype in subsec-
tion 2.2.2. For instance, OptiTrack utilizes an array of IR cameras that can detect
multiple markers attached to a tracked artefact in a unique geometry, so that it can be
identified (Ribo et al., 2001). By a blob detection of the markers and the non-reflective
background of the camera image, markers can be identified and their 3D position can
be reconstructed by processing and merging the 2D images of all cameras in the array,
whose position is known (Ribo et al., 2001). Infrared markers are available in differ-
ent forms and shapes and can also be placed on ordinary objects such as a sheet of
paper so that it can be used as a magic lens as demonstrated with the PaperLens pro-
totype(Spindler et al., 2009). In this application, a tracked sheet of paper was used to
show additional information layers of a visualization that was displayed on a table sur-
face by an overhead projector. The height of the sheet of paper above the table surface
was calculated by sensing the infrared markers on it and with varying height, changing
additional information layers were projected on the sheet of paper.

VICON claims up to 76 μm of accuracy and a maximum noise of up to 15 μm
in a four-camera configuration (Windolf et al., 2008). Although high accuracy can be
achieved with commercial IR tracking systems such as the two described, some re-
searchers do not expect that they will be used in an broad environment for user tracking
due to the need to wear markers(Vogel & Balakrishnan, 2004).

Some consumer-grade virtual reality headsets such as the Oculus Rift DK2 HMD
released 2014 for developers use a similar setup by tracking an array of infrared LEDs
on the headset with an infrared camera (Kreylos, 2014). Each of these 40 LEDs is
modulated in the time domain so that each individual LED that is currently visible can
be identified after 10 frames are captured by the camera. On the host PC to which the
HMD and the infrared camera are connected, the 3D pose estimation is then calculated
(Kreylos, 2014).

With the development of the “indoor Global Positioning System” (iGPS) by the
company Arc in the 1990s and its acquisition by Nikon in 2009, an indoor tracking
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system primarily used for industrial applications has emerged that works with a similar
principle as the Vive Lighthouses. It consists of a scalable number of transmitters that
emit two rotating laser sweeps and a vertical strobe impulse (Schmitt et al., 2010).
Tracked objects such as a robot or a forklift are equipped with at least two photodiode
sensors that receive the strobe impulse for syncing the timing of the two laser sweeps.
The time difference between the laser signals and the receiving photodiode is used to
determine the elevation (vertical) and azimuth (horizontal) angle from the transmitter
to the receiver (Schmitt et al., 2010). To calculate the position of a tracked object, the
signals from at least two transmitters have to be received. The position of the tracked
object can then be calculated by combining elevation and azimuth between the receiver
and two different transmitter base stations (Schmitt et al., 2010). Depending on the
environment in which this system is used, more than two transmitters can be used to
increase the covered area or to reduce the risk of losing line of sight.

RGB Camera

Many camera-based tracking prototypes such as the HuddleLamp use a RBG camera
additionally to a depth camera. The prototype is specialized on tracking the arrange-
ment of multiple devices on a table surface as well as on hand tracking of users who
sit around a table and use multiple mobile devices acting as one large, collaborative
workspace for group tasks (Rädle et al., 2014). It uses a time-of-flight (TOF) depth
camera providing a 1280×720 RGB image and a 320×240 depth image at 25-30 fps
(Rädle et al., 2014). This camera is mounted inside a desk lamp so that the tracking of
hand movements and arrangement of mobile devices on the table can be performed from
a bird’s eye perspective enabling hand gestures for multi-device collaboration, such as
moving content between devices. Hand detection and tracking is implemented through
a computer vision application that applies background subtraction, depth thresholding,
flood fill segmentation and Kalman filtering on the depth image to identify contours
that represent an arm reaching into the image from outside (Rädle et al., 2014). The
tracking of devices is established by combining the by Canny edge detection identified
rectangles in the raw RBG image with corresponding areas with low IR reflections from
the depth image, as it was observed that mobile device screens cause very low IR re-
flections (Rädle et al., 2014). The tracked devices can then form a screen-overlapping
user interface for collaboration. New devices can join the shared workspace in an ad-hoc
manner by opening a URL in the browser that displays an optical, fiducial marker which
is then recognized by the camera as soon as the tablet is put on the table so that the
mobile device is identified (Rädle et al., 2014).

The probably most popular device in research for optical user tracking although it
suffers from occlusion, much noise in skeleton tracking and high latency is the Microsoft
Kinect(Caserman et al., 2019). With a front-facing RBG camera, infrared depth sensor
and a microphone array, the Kinect makes it possible to use human movements, de-
tection of skeletal joints, facial recognition and voice commands in applications so that
for example user movement or arm gestures can be utilized as interaction input(Zhang,
2012). Given the camera’s field of view, optimal depth sensing is achieved at a dis-
tance from 1 to 3 meters(Khoshelham & Elberink, 2012). With the development of
this low-cost device, considerable advancement in human skeleton joint detection was
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achieved(Shotton et al., 2011). However, the detection by the first-generation Kinect
can only reliably track gross movements such as sit-to-stand, but is rather inaccurate in
detecting fine movements such as hand clapping or finger tapping(Galna et al., 2014).
The Kinect V2 which is based on the time-of-flight principle has a higher accuracy in
detecting smaller movements, but the latency remains relatively high with 170ms when
it is for instance combined with an Oculus Rift(Botev & Rothkugel, 2017).

2.3.3 Acoustic Tracking
Tracking systems based on ultrasound calculate the distance between a transmitter and
a receiver by measuring the Time of Arrival (ToA) of ultrasound waves between sender
and receiver (Mainetti et al., 2014). Given the known travel speed of ultrasound waves,
the position of an emitter can be calculated by multilateration with three or more fixed
receivers placed in known locations.

Ultrasound is also used in commercial tracking systems such as the “hedgehogs”
distributed by Marvelmind robotics. The position of these mobile sensor modules is
determined by transmitters using ultrasound ranging(Amsters et al., 2019). As these
transmitters determine their relative position between each other also via ultra-sound,
this system self-calibrating.

One problem with acoustic tracking methods such as ultrasound is the dependency
between temperature and sound speed. Assuming a maximum range of 10m, the devia-
tion in range estimation increases by 2 × 10−3m for each degree Celsius(Mainetti et al.,
2014).

ToA-based, acoustic tracking systems are however not only limited to ultrasound.
For instance, BeepBeep(C. Peng et al., 2007) uses a uniquely identifiable beep sound to
the determine the distance between two devices such as smartphones. To establish this,
both devices listen with their microphones for the beep signal and at the same time play
the signal regularly with their speakers. Each recording of a device then contains two
beeps - its own and the one from the other device(C. Peng et al., 2007). As the signals
are played at a fixed time rate, the two devices can calculate their relative distance
based on the known sound travel speed after exchanging two beep signals. In quiet
indoor environments, this system is able to provide accuracy in the millimeter range
(C. Peng et al., 2007).

2.3.4 IMU-based Tracking
Combining tracking data from the IMUs of multiple devices can be used to enable
context-aware user interfaces and cross-device interactions, for instance between a smart-
phone and a smartwatch(Kubo et al., 2017). With the analysis of the accelerometer data
of both devices with a machine learning algorithm, different poses across the two devices
can be detected to adapt the user interface dependent on the identified context (Kubo
et al., 2017). If, for instance, the user is holding the smartphone in his or her hand in
an orientation from which it can be derived that the user is looking on the smartphone
screen and if simultaneously the arm with the smart watch is hold down, a small over-
lay tile with the smartwatch content can be displayed on the smartphone(Kubo et al.,
2017).
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2.3.5 Radio Frequency-based
Using the WiFi signal as a localization technique is a cost-effective method for coarse-
grained device tracking, as no additional hardware is required(Mainetti et al., 2014).
Usually, the Received Signal Strength Indicator (RSSI) which is part of the IEEE 802.11
standard is used to estimate the physical location of a device within a network. This
estimation can be performed in three different ways(Mainetti et al., 2014):

• Cell of Origin (CoO): by knowing the physical location of the access point the
device is currently connected to, a rough estimate about its position can be made.

• Triangulation: the signal strength observed by the target device at multiple access
points can be used to calculate a closer estimate of its position.

• Fingerprint method: during a calibration phase, the signal strength observed by
fixed routers are stored in a database and later compared with the measured signal
strength by a target device to estimate its location.

The accuracy of WiFi-based localization is however limited and only suitable as a
rough estimate. Recent work shows that a maximum accuracy of about 3 meters can be
achieved(L. Chen et al., 2014).

An alternative for the WiFi signal that is also readily available on most mobile
devices is the Bluetooth signal as defined in the IEEE 802.15.1 standard. It operates
in the 2.4 GHz ISM band and has compared to WiFi a lower power consumption as
well as a shorter range, typically 10-15 meters maximum (Mainetti et al., 2014). A
proprietary example of a Bluetooth-based indoor localization are Apple’s iBeacons that
provide location-based information and services to iOS devices that are in reach of
the iBeacon. Although bluetooth provides a higher accuracy than WiFi, its positioning
error is still frequently between 2 and 3 meters (Mainetti et al., 2014). However, it is still
possible to use the bluetooth signal for fine-grained tracking. For instance, by analyzing
characteristics of the bluetooth signal emitted by a mobile device, another mobile device
can estimate how this device is located to it when both are lying on a flat surface(Jin
et al., 2015). This information can be used for example to create a single display across
multiple devices.

Another technology that can be used for tracking is the use of RFID readers and
transceivers. The active RFID readers that can transmit signals autonomously broadcast
a radio signal that is received the transceivers (Mainetti et al., 2014). With this signal,
the otherwise passive transceivers get activated and send an identifying response back to
the reader. With multiple, distributed readers, the movement path of an object equipped
with a RFID transceiver can be tracked this way. The used frequencies for RFID vary
between 125-134 kHz (low frequency), 13.56 MHz (high frequency) and 860-960 MHz
(ultra-high frequency)(Mainetti et al., 2014). One advantage of RFID is that the passive
transceivers do not need a power supply.

RFID transceivers with differently large coverage areas can for instance be used to
determine whether a device’s distance to a RFID reader is below two different thresholds,
depending on which transceivers are detected (Prante et al., 2003).

Besides the widely introduced WiFi, Bluetooth and RFID standards, there are also
tracking approaches based on other radio frequencies, many of them trying to address
the limitations of WiFi signals for example(Mainetti et al., 2014). Y. Chen et al. (2012)
implemented a room-level indoor localisation based on FM radio signals that have a
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significantly better indoor penetration due to their lower frequencies. Compared to a
WiFi-based localization, accuracy could be improved by 5% with the FM-based tracking
and by 83% when WiFi and FM signals were combined(Y. Chen et al., 2012). There
exist also proprietary radio-based localization techniques such as the Qualcomm Short
Range Communication Technology (QSRCT) explained in section 2.2.1 hat can reach
a significantly higher accuracy of approximately 10cm by triangulation between radio
base stations and tracked radio modules (Marquardt et al., 2012). Other products by
Pozyx labs use ultrawideband radio signals that are less prone to obstacles because of
their large bandwidth(Gezici et al., 2005) with a 9-axis IMU in tracked objects(Amsters
et al., 2019).

2.3.6 Common Challenges in Tracking
Especially earlier tracking solutions have to cope with a limited feasibility of real-world
applications as they rely on significant hardware infrastructure(Wilson & Benko, 2010)
or custom, specialized hardware(Klinkhammer et al., 2011). Developers trying to im-
plement proxemic-aware systems are often exposed to a high threshold. Even if there is
sufficient hardware available, translating raw sensor data into a meaningful, spatial data
structure remains a complex task and involves for instance calibration, signal processing
or complex 3D math calculations (Marquardt et al., 2011).

Many tracking solutions have also to cope with a high level of noise in sensor data,
which can have numerous reasons (Kubo et al., 2017). For instance, a prototype similar
to the Vive lighthouse was negatively affected by the vibrations of the slightly unbal-
anced laser rotors of the base station and caused a maximum error of 3cm(Islam et al.,
2016).

Depending on the underlying technology, there exist also drawbacks in accuracy.
Tracking technologies that only offer only course-grained sensing enable rather limited
interactions(Marquardt et al., 2012). For instance, some radio-based protocols such as
WiFi or Bluetooth have a maximum accuracy of roughly 2-3 meters and are therefore
not suitable for applications where high accuracy is needed (Mainetti et al., 2014). If
high accuracy in rotation data is required, many optical solutions (e.g. infrared, fiducial
markers) require a large marker configuration as the distance between the markers on
the tracked object influences the resolution of rotational tracking(Luckett et al., 2019).
Previous methods that aimed to obtain six-degrees-of-freedom for a tracked object were
prone to high latency, accumulated error, inaccuracies, intensive computation and often
required expensive, specialized components with complex calibration procedures(Islam
et al., 2016).

Furthermore, latency is also a frequently faced problem. For instance, bluetooth-
based tracking algorithms commonly use the device discovery procedure for location
finding, which can increase the localization latency to up to 30s(Mainetti et al., 2014).

The tracking of users is an especially challenging field, as it creates additional ob-
stacles for developers which are not all related to technological limitations. One of them
is to identify relevant patterns for the interactions to be designed, as users carry out a
broad spectrum of activities and are found in many different poses (Hu et al., 2014).
Several earlier user tracking solutions rely on rather intrusive mechanisms lowering the
acceptance by users such as wearing Lycra suits to track body parts (Corrales et al.,
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2008) or on worn sensors(Kitamura et al., 2009). Camera-based user tracking solutions
might also rise privacy concerns for users if their faces are visible for a front-facing
camera (Hu et al., 2014).

Furthermore, optical, camera-based user tracking methods such as the Kinect fre-
quently suffer from occlusion so that human skeleton joint detection is not always pos-
sible or can generate false positives and image blur if the frame rate is too low(Hu
et al., 2014). RBG camera tracking by image processing is also prone to reflections, for
instance caused by string lighting (Rädle et al., 2014). Processing and transmission of
image data puts also a comparatively high load on I/O, CPU and energy consumption
(Islam et al., 2016). The suitability of camera-based tracking with small, mobile devices
is therefore limited.

2.3.7 Evaluation of Tracking Systems
A common way to evaluate tracking systems indirectly on a HCI level is to test the
implemented spatial interactions of a prototype by operationalizing its usability. For
instance, by collecting the detection rate (recall), which gives the percentage how many
user attempts to initiate the desired interaction were recognized as such it can be deter-
mined whether the system can be operated by the intended user group (Hu et al., 2014).
Collecting such measures is frequently part of qualitative user studies or controlled ex-
periments evaluating the usability of a certain prototype, in which participants are
able to provide additional feedback through interviews or questionnaires (Brudy et al.,
2019). However, as the planning, conduction and evaluation of a user study requires
a significant amount of effort, some prototypes, especially technical systems such as
tracking toolkits or development frameworks are only evaluated through demonstration
where the focus lies on the question what the prototype is capable of (Brudy et al.,
2019). Another approach to evaluate usability without the need for human participants
is to perform a heuristic evaluation by applying a set of defined criteria(Nielsen, 1994).
However, as cross-device interaction research is missing specialised metrics and through
frequently observed unexpected user behaviour during studies, such heuristics provide
limited value(Brudy et al., 2019).

From a technical viewpoint, multiple dimensions are relevant to evaluate tracking
data comprehensively so that the question how well a system works can be operational-
ized. Tracking systems are not only required to deliver a satisfying level of accuracy,
which is defined by the difference between reported and actual position and orientation,
but also to provide a sufficient level of precision, which is defined by the intensity of jitter
in reported position or orientation (Luckett et al., 2019; Niehorster et al., 2017; Rädle
et al., 2014). Rädle et al. (2014) mention also the term of reliability, that represents
the percentage of samples (e.g. frames) in which the tracking connection was upright so
that tracking was available (Rädle et al., 2014). Other work suggests to also examine the
tracking resolution, which defines the smallest step in positional or orientational change
that a tracking system is able to report(Luckett et al., 2019). The higher this resolution
is, the closer is the approximation of the tracking system to the real-world spatial data.
A common problem in tracking that is also addressed in recent research is drift, which
is the degree to which a tracking system loses its accuracy over time (Luckett et al.,
2019).
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Accuracy

For tracking methods that are based on tracked devices, a common approach to measure
the accuracy of tracking is to put them onto a grid with marked positions from which
the exact position relative to the origin of the tracking coordinate system is known
(Niehorster et al., 2017; Rädle et al., 2014). After keeping them there static for a certain
amount of time to avoid jitter, position and/or orientation are recorded for a fixed time
frame, e.g. 1 second. After calculating the mean or median of all samples of this single
measurement, it can be compared to the real position or orientation values (Niehorster
et al., 2017). The result is commonly presented as the error between real and reported
values(Luckett et al., 2019).

Additionally to the error between reported and real spatial data, the tracking so-
lution which has a direct impact on the minimum error of the tracking system can be
analyzed. It describes the smallest possible change in position or orientation that can
still be detected by the tracking system (Luckett et al., 2019). Measuring tracking res-
olution usually requires an apparatus that is able to move or rotate the tracked object
in very small increments to reach the smallest possible threshold at which the track-
ing systems shows a reaction (Luckett et al., 2019). The reported change in position
or orientation after reaching the threshold is then compared with a measurement in-
dependent from the tracking system. Although for many applications, a fine tracking
resolution might not be necessary there are use cases such as surgical simulations that
require a very fine-grained resolution (Luckett et al., 2019).

Precision

Precision can be measured by quantifying sample-to-sample jitter with the root mean
square of the changes in position and orientation reported by the tracking device
(Niehorster et al., 2017) and quantifies the intensity of jumps between the single frames
of the tracker output. A high RMS consequently indicates a high presence of noise in the
position and orientation data. RMS for a measurement of n samples can be calculated
as follows (Niehorster et al., 2017):

RMSm =

√√√√ 1
n

n−1∑
i=1

Δm2
i

where Δm2
i represents the difference between the samples i and i + 1 of the analysed

measurement m.
To illustrate the the spread of the precision of positional data between different

measurements in a dataset, the bivariate contour ellipse area (BCEA) can be calculated,
a method that originates from eye-tracking(Blignaut & Beelders, 2012). It represents the
spatial area that was covered by a specificed amount of samples of a single measurement
and can reveal slow drifts in tracking through an increasing BCEA area where the
RMS value would possibly still remain low (Niehorster et al., 2017). The BCEA can be
determined for a two-dimensional coordinate set (e.g. X and Z) as follows:

BCEAx = 2kπσXσZ

√
1 − p2
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where σX represents the standard deviation along the X axis and σZ the standard
deviation of the Z axis respectively (Niehorster et al., 2017). p stands for the Pearson
correlation coefficient of recorded positions along the axes. For k, the probability area
P which represents the confidence that all measured positions are located in the elliptic
shape of the BCEA has to be specified first. Most studies work with a value of 0.68 for
P (Niehorster et al., 2017). k can then be calculated by k = − log(1 − P ).

To further visualize the BCEA ellipse, its aspect ratio and orientation have to be
calculated. This can be achieved by factorizing the 2x2 co-variance matrix through
eigenvalue decomposition along the X and Z axis (Niehorster et al., 2017):

VXZ =
[

σ2
X ρσXσZ

ρσXσZ σ2
Z

]

VXZ = QΛQ−1

The eigenvectors of VXZ consist of the columns of the 2x2 matrix Q and diagonal matrix
Λ = diag(λ1, λ2), while λ1 and λ2 represent the eigenvalues of VXZ (Niehorster et al.,
2017). The aspect ratio AR is then given by

AR =

√
λ1
λ2

as the eigenvalues are equivalent to the squared relative lengths of the BCEA ellipse’s
principle axes (Niehorster et al., 2017). The ellipse’s major axis orientation θ can be
determined by

θ = tan−1 q21
q22

A common problem in tracking that is also related to the spatial spread of tracking
data is tracking drift (Luckett et al., 2019). It describes the observation that some
tracking systems are prone to longitudinal drift over the time of usage regarding their
reported positions. To analyze possible drift, the sway path of a tracked object can be
used. This metric represents the sum of Euclidean distances of all consecutive sample
coordinates during a single measurement (Axholt et al., 2008). Also called drift path
by Luckett et al. (2019), the jumps between each consecutive sample in the total path
can be visualized by plotting a line from each sample to the following in three 2-axis
coordinate systems, each showing x/y-, y/z- and x/z-coordinates respectively (Luckett
et al., 2019). A largely scattered plot then indicates a high drift assuming that the
tracked objects did not move during measurement. The changes between each sample
Pi and its consecutive can also be aggregated to calculate the total drift path Dp in the
measurement where a high total drift path indicates higher drift (Luckett et al., 2019):

Dp =
∑

i

distance(Pi, Pi+1)

Additionally, the Distance from Center Point metric (DFCP) can be calculated. It
quantifies the mean distance from the samples of a measurement to a reference point,
which is in this case the positional or rotational centroid of the measured object (Luck-
ett et al., 2019). Since the centroid is defined by the average, the DFCP represents a
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directed standard deviation (Axholt et al., 2008). It can be calculated by summing up
the Euclidean distances from the centroid to all sample points and dividing them by
the number of sample points n(Axholt et al., 2008; Luckett et al., 2019):

DFC =
∑

i distance(Pi, centroid(P ))
n

Latency

An important performance indicator for a system based on spatial tracking is the end-
to-end-latency that describes the time difference between the physical movement of a
tracked device or body part and this movement being reproduced in the system, for
example on the screen of a VR headset (Caserman et al., 2019; Niehorster et al., 2017).
A too high latency has a negative effect on the usability of a spatially-aware system.
For instance, VR applications would suffer from appearing unstable in 3D space (Jerald
& Whitton, 2009) and from increasing motion sickness (Kinsella et al., 2016). In virtual
reality, a too high latency often causes oscillopsia, which describes the user perception
that the visual world appears to swim or oscillate in space, so that the application is
experiences as unstable(Allison et al., 2001). Typically, latency should stay below 20ms
to avoid such problems(Raaen & Kjellmo, 2015).

One approach to measure end-to-end latency of a VR headset is to film the tracked
object with a high-speed camera (Niehorster et al., 2017). By implementing a visual
feedback that is ideally also visible on the video of the filmed device as soon as a change
in motion or orientation was detected, it is possible to calculate the latency. Starting
from the video frame in which the motion or orientation change starts, the number of
video frames is counted until the visual feedback appears in the video (Niehorster et al.,
2017). With the video’s known frame rate per second, the end-to-end latency can then
be calculated in milliseconds.

A similar approach to measure the end-to-end-latency with a high-speed camera can
also be followed for the Vive tracker. First, the tracker that is filmed with the high-speed
camera is attached to a string in order to swing it(Caserman et al., 2019). A box that
is moving according to the physical movements of the tracker in a VR application is
added to the video. The horizontal position of both tracked objects is then extracted
in each frame. These horizontal position data samples of both objects are smoothed by
applying a Gaussian kernel(Caserman et al., 2019). As soon as a peak in the horizontal
position data is detected, the frame number is saved in an array. This delivers two
equally long arrays with frame numbers, one with the peaks of the Vive tracker, the
other with the peaks of its virtual box representation. After all frames were processed,
the time difference between the start of the motion(tmotion) and the display of the
motion (tdisplay) can be calculated. The latency t in milliseconds is then determined as
follows(Caserman et al., 2019):

t = 1
N

N∑
i=0

(Xi − X̃i)
1000
FPS

N represents the number of peaks detected. While Xi represents the frame number
of the ith peak of the Vive tracker, X̃i represents the frame number of the ith peak of
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the virtual objects(Caserman et al., 2019). FPS depends on the frame rate per second
of the camera.

2.4 Utilizing HTC Virtual Reality Hardware as Tracking Equipment

2.4.1 HTC Vive Hardware Insights

Lighthouse Base Stations

The key component that enables the Vive environment to gain precise spatial knowledge
about tracked devices like HMD, controllers and trackers are Vive’s Lighthouse base
stations. Each station is equipped with an infrared LED array, which flashes regularly
flashes a wide-angle synchronization pulse to initiate the start of a new measurement
cycle at the beginning of a 8.333ms laser sweep period(Dempsey, 2016; Kreylos, 2016).
As the base stations are usually installed facing each other diagonally in the room, this
IR signal can be used to synchronize cycles between the two base stations(Kreylos, 2016).
The base stations are operated independently from a PC, although earlier versions had
to be synchronized with each other by connecting them with a USB cable (Dempsey,
2016). Under difficult conditions like operating the lighthouses outdoors (Luckett et al.,
2019), this option still exists. Under ideal conditions, the lighthouses are able to measure
with sub-millimeter precision if the diagonal of the tracked area does not exceed 5
meters in length (Astad et al., 2019), although subjectively good performance was also
experienced with lighthouses being placed 7.45 metres apart (Niehorster et al., 2017).

The actual detection of devices is established with two motorized, rotating infrared
lasers inside each base station, one horizontally and one vertically that sweep a 850 nm
infrared laser line spanning 120° in each direction at a fixed frequency (Niehorster et
al., 2017). HMD, controllers and trackers are equipped with multiple rigid photodiodes,
so that their position and orientation can be determined by the time and order in
which these sensors receive the IR laser signals from a lighthouse (Dempsey, 2016). An
earlier prototype was implemented with low-cost components and an almost identical
hardware setup, except using only one base station at the cost of lower precision and
stability(Islam et al., 2016).Unlike the Vive using time-based arrival to calculate pose
and position of the tracked object, azimuth and elevation angles of each photodiode
relative to the base station were calculated with this prototype. These angle data were
then transmitted to a host PC where the calculation of 3D position and orientation was
performed (Islam et al., 2016). The algorithm is similar to the angle-of-arrival concept
used for antenna array-based localization in wireless sensor networks (Kułakowski et al.,
2010). With this technology, location is estimated by exchanging radio signals between
multiple nodes equipped with arrays of antennas (R. Peng & Sichitiu, 2006).

This approach contributes to the low-latency requirements in VR, as pose calculation
is distributed across tracked devices (Islam et al., 2016). By using the signal of the base
stations’ regularly flashing LED array as a synchronisation pulse and knowing the rotor
revolution period, tracked devices can time the laser sweeps received by the photodiodes
and determine their angle relative to the base station independently (Islam et al., 2016).
Furthermore, with the usage of two base stations facing each other and a large number
of photosensors on the tracked devices, this system is less prone to occlusion than some
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Figure 2.10: Frequent position calculation with the IMU of the tracked device with
error propagation through IMU drift being regularly corrected by the optical update of
the lighthouses(Sletten, 2017)

other optical solutions, such as the camera-based Kinect (Caserman et al., 2019).
Additionally to the measurement of absolute position and orientation via the IR

laser sweeps from the lighthouses, all tracked devices like HMD, controllers and trackers
contain an inertial measurement unit (IMU). The IMU is in fact the primary source
for position and orientation updates through path integration (Niehorster et al., 2017).
This allows to increase the frequency of measurements by calculating relative position
and orientation updates between the start and end of a lighthouse laser measurement
cycle(Astad et al., 2019; Niehorster et al., 2017). With the lighthouses, otherwise fre-
quent errors during inertial measurements like IMU drift and noise can be regularly
corrected at a rate of 120 Hz as illustrated in Figure 2.10(Kreylos, 2016).

Hence, the Vive ecosystem follows a hybrid tracking approach by combining the
outside-in tracking of the lighthouses with IMU-based inside-out tracking of devices with
sensor fusion. While adding IMU tracking on top of the lighthouse solution allows more
frequent position and orientation updates, the regular cycles of outside-in measurements
with the lighthouse can help minimizing the impact of common inside-out tracking
problems like IMU drift.

After the installation of the lighthouse base stations, a guided calibration procedure
has to be performed during the setup of the Vive software package (Niehorster et al.,
2017). By placing both Vive controllers closely together on the floor at the center of the
tracked space, the floor location and orientation is calibrated. Furthermore, the bound-
aries of the play area are recorded with the controllers and the origin and orientation of
the Vive coordinate system is set. Although it is not yet possible at the time of writing,
the lighthouses are theoretically scalable to more than two base stations to cover larger
tracking areas(Kreylos, 2016).

Vive Trackers

A distinct feature of the HTC Vive compared to VR systems from other manufactur-
ers like Oculus is the availability of so-called Vive Trackers that allows developers to
integrate any real-world artefact into their VR environment by attaching one of these
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Figure 2.11: (a) Schematic drawing of Vive tracker showing hardware details such as
sensor positions and pogo pins, (b) red sphere indicating one of the ”keepout” area for
metallic objects (HTC Corporation, 2018)

trackers to it (Caserman et al., 2019). In the consumer market it is mainly used for vir-
tual reality gaming accessories like guns, swords or tennis bats that can be tracked with
the Vive tracker attached to it using a standard 3/4” camera mount bolt(Figure 2.12
(b)). Additionally to the tracking of position and orientation, button press or trigger
pulling events can be forwarded to the VR application by connecting the pogo pins on
the backside of the tracker with the accessory (HTC Corporation, 2018).

The Vive tracker has a round ground shape with a diameter of 99.65mm. At the
outer edge of it are three antenna-like rounded peaks, which give the tracker a maximum
height of 42.27mm. With a weight of 89g, it does not add much weight to the accessory
(HTC Corporation, 2018). It has a total number of 18 photodiode sensors which are
recognizable from the outside by indentations in the enclosure that receive the infrared
laser signal from the lighthouses as described in the previous section. If the IMU of
the Vive tracker that is used to calculate position and orientation between Lighthouse
cycles is operated in an environment with continuous vibration it is recommended to
use a damping mechanism to avoid IMU drift (HTC Corporation, 2018).

The tracker transmits position and orientation data through a proprietary radio
frequency to a dongle that is connected via USB with the computer running the VR
application. To guarantee the stability of this wireless connection, the over-the-air per-
formance of the connection should not drop to more than 3dB (HTC Corporation, 2018).
This caused the manufacturer to define a three-dimensional k̈eep outärea for metallic
objects except the mount in the shape of a sphere with 30mm radius around the antenna
feed point of the tracker as illustrated in figure Figure 2.11 b) (HTC Corporation, 2018).

The maximum field of view in which the Vive tracker can be detected by the light-
houses is 270° as illustrated in Figure 2.12 a). The remaining not trackable 90 degrees
are designated for mounting the tracker on the accessory and are located at the backside
of the tracker together with the 3/4” screw mount and pogo pins. The actually available
field of view in degrees θ can be calculated as follows (HTC Corporation, 2018):

θ = 180 + 2 × tan−1 2Y

X
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Figure 2.12: (a) schematic drawing of the maximum field of view (θ) of the Vive tracker
depending on accessory dimensions, (b) Vive tracker mounted on VR gaming accessory.
Field of view can be additionally limited by the accessory (HTC Corporation, 2018)

where X represents the width of the docking surface of the accessory and Y the dis-
tance between the backside of the tracker and the docking surface of the accessory in
millimeters (see Figure 2.12 a).

2.4.2 Prototypes Utilizing Vive Trackers in Virtual Reality
The Virtual House of Medusa is a playful Virtual Reality prototype in which multiple
players can explore and reconstruct fragments of Roman wall paintings discovered in
Enns, Austria (Hagler et al., 2018). Unlike many other VR applications, the prototype
is designed as a multiplayer application. While there is only one player wearing a HMD,
up to four co-players using a tablet can interact with the VR player. Each tablet is
equipped with a Vive tracker which is mounted at the backside of the tablet, so that
position and orientation of the device are known within in VR space. With these spatial
data about the tablets, co-players can move around in the virtual space that is usually
only accessible by the VR player and give hints to him or her by highlighting artefacts
that were selected by touching them on the tablet view and showing a particle beam to
indicate the area of interest for the VR player. This approach solves the perspective gap
problem, which describes the common issue that VR players can usually not effectively
share their experiences with others(Ishii et al., 2017). Although the paper is missing a
detailed evaluation, this prototype delivers indication for a proof-of-concept that Vive
trackers can be used with satisfying reliability when they are mounted on the backside
of a tablet, which is in fact a rather unideal mounting position according to the Vive
specifications outlined in chapter 2.4.1.

A prototype for the exploratory analysis of complex data sets supported by Vive
Trackers was implemented by Fonnet et al. (2018). Equipped with a HMD and two Vive
controllers, users can move around freely in a virtual 3D scatter plot and interact with
the data by selecting single items with their controllers. To avoid fatigue during longer
sessions, a movable desk-/chair combination was provided (see figure Figure 2.13). With
a Vive Tracker attached to it, the position and orientation of a virtual representation
of this chair was constantly updated, so that this physical artefact was usable without
removing the HMD.
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Figure 2.13: Mobile chair that is equipped with a Vive tracker (left) and virtual repre-
sentation of the chair updated with tracking data (right) (Fonnet et al., 2018)

Figure 2.14: Vive trackers attached to wrist and ankle to track leg and arm movements
for animating the prototype’s player avatar(Caserman et al., 2019)

The application of Vive Trackers is however not restricted to physical artefacts,
they can also be used for human body tracking. Many other common devices such as
the Kinect implement body tracking to a certain degree, but are negatively influenced
by either high latency or low accuracy(Caserman et al., 2019). In particular, in VR a
large delay between physical movement and the corresponding change in graphics can
disturb the user’s sense of immersion(Farahani et al., 2016). If this latency exceeds 30ms
it is likely that users will lose the sense of body ownership(Kasahara et al., 2017). A
possible solution to this problem is using Vive trackers to track the end-effectors of the
human body. By attaching them for instance to hands and feet as in figure Figure 2.14,
they can be used to animate a player avatar in a VR application in real-time matching
the player’s real-world movements(Caserman et al., 2019).

In combination with the tracked position of the HMD, the trackers’ position and
orientation relative to the player’s torso can be determined. By calculating inverse kine-
matics, spatial data about all human joints (e.g. elbows, knees) that are needed to
animate the avatar realistically can be generated, while only the tracking of human
end-effectors is necessary. During a user study, the authors registered that most sub-
jects answered that they perceived a fairly high accuracy and low latency. Indeed, the
total delay in tracking - which was measured as the time difference between starting the



2. Related Work 34

physical tracker movement and the start of the corresponding movement of the avatar
- remained with 6.71 ± 0.80 ms well below the limit of 20ms suggested by Raaen and
Kjellmo (2015).

2.4.3 Usage of Vive Controllers and Trackers Outside Virtual Reality
While research with the Vive tracker in virtual reality since its introduction in 2017
is continuously increasing, only few research has examined their potential use for non-
VR applications. One emerging research focus is here to utilize Vive tracking in the
field of robotics. The University of Stavanger, Norway supervised a Master’s thesis that
utilized Vive controllers for automated testing of industrial robots (Sletten, 2017). A
controller was mounted on the tool of the robot and several pre-defined test procedures
were started while recording the movement path of the robot with the Vive controller.
Afterwards, the recorded movements were compared with the desired path. Results
showed an increased jitter in position tracking from 0.8mm to 1.2mm most likely caused
through vibrations of the robot’s arm, but accuracy was still rated as sufficient for the
given use case.

A similar approach to utilize Vive tracking as an alternative ground truth measure-
ment tool was also followed with Vive trackers to benchmark the localization algorithms
of a free-flying robot called Astrobee that was constructed for the International Space
Station (Borges et al., 2018). For this purpose, the robot that has a cubical shape was
equipped with two Vive trackers attached to opposite sides and one Lighthouse was
installed on the ceiling operating from a bird-eye-view.

Work in the field of robotics was continued by implementing a prototype for rapid
robot cell calibration (Astad et al., 2019). The objective was to create an approximate,
spatial one-to-one mapping between a real robot cell and its virtual representation in
RViz, a 3D robot visualizing software. This was established by attaching a Vive controller
to the tool of the robot. A hand-eye calibration procedure which determines sensor
displacement after a change in the tool pose of the robot (Shiu & Ahmad, 1989) was
implemented for the Vive controller. After generating tracking data from a pre-defined
set of sample poses, the spatial relationships of the real robot cell were mapped to its
virtual representation by performing the hand-eye calibration for each pose. Another
feature was the recording of cubical obstacles with a Vive tracker to model collision
avoidance in the robot cell and its virtual representation. By collecting the position of
four edges of the cubical obstacle with the tracker, the total length, width, height and
orientation of the obstacle was calculated.

2.4.4 Evaluation of Vive Device Tracking
Unlike professional-grade motion tracking systems, mass-produced consumer-grade sys-
tems such as the HTC Vive typically do not undergo intensive evaluation before shipping
(Luckett et al., 2019). As a result, the limitations of these systems are frequently un-
known and may vary from system to system, intensifying the need for an assessment
(Luckett et al., 2019).
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Figure 2.15: Recorded mean X-Z positions at each grid with headset facing along positive
and negative x-axis(Niehorster et al., 2017)

Positional & Rotational Accuracy

Niehorster et al. (2017) performed a quantitative test of the Vive’s HMD positional
tracking accuracy. The tests were conducted on two identical Vive systems for cross-
checking and a research-grade WorldWiz Precision Position Tracking system (PPT) for
comparison.

With the lighthouses being placed at a maximum of 7.45 meters apart, the distance
between them was detected with an error of 3cm by the Vive software (Niehorster et
al., 2017). To cover this rather unusually large distance, the lighthouses were turned
7.2° outwards away from the room’s center with a downward angle of 25°, which does
actually not align with the manufacturer guidelines that recommend 30°-45° (Niehorster
et al., 2017).

The accuracy of the spatial position data of a Vive HMD was measured by putting
it at a fixed height to several pre-defined grid points in steps of 1m that are marked on
the floor in a room and collecting three seconds of positional data which comes to 270
samples at a frame rate of 90 fps (Niehorster et al., 2017). The mean X-Z position of
the samples of each measurement can then be compared against the grid points as in
Figure 2.15.

A systematic error in reporting position data that occurs after temporary loss of
tracking is called Switching Bias and causes a large offset in position data after the
brief loss of tracking (Niehorster et al., 2017). It is therefore more likely to occur in large
tracking areas where the lighthouse distance exceeds a certain threshold and in extreme
positions of the tracked area (Niehorster et al., 2017). As illustrated in Figure 2.16,
the offset is larger in remote grid points of the tracking area. As there is no one-time
calibration procedure to recover from this offset, the most pragmatic solution to it is
to avoid its cause (Niehorster et al., 2017). Another preventive way to avoid this error
in most cases is to keep one tracked device at a static location that is always visible to
both lighthouses (Astad et al., 2019).

Position and orientation accuracy of the Vive Tracker instead of the HMD was eval-
uated by Luckett et al. (2019). Two different tracking area sizes with an inter-lighthouse
distance of 7.6m and 6.3m were used, which is again larger than the recommended max-
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Figure 2.16: Mean of the reported X-Z positions of the samples of each measurement
with headset facing along the positive X axis (a) and negative X axis (b) after temporary
loss of tracking. At some grid points, tracking was completely lost so that no measurement
was made (Niehorster et al., 2017)

imum of 5.5m by HTC (Luckett et al., 2019). A Unity application to capture position
and rotation data every 10ms for a specified number of seconds - 10s in these trials -
was used.

A common difficulty in measuring positional accuracy for tracking systems is to align
the coordinates of the tracking system with the coordinates of an independent measur-
ing system that is used for comparison, often referenced as “ground truth” (Luckett
et al., 2019). Many evaluations establish this by manually measuring distances by an
experimenter, which adds a certain level of risk for inaccuracies (Luckett et al., 2019).
This is the reason why Luckett et al. (2019) chose not to use a regular grid for measur-
ing positional accuracy, but to choose 30 random positions in the tracked space and to
compare the Vive tracker’s position data with measurements from two laser rangefinders
mounted on a tripod (see Figure 2.17 a) ). Additionally to the measured tracker mounted
on the tripod that was moved by hand to the random positions, another tracker was put
statically on a table surface in the tracking area so that not only absolute position of the
tripod tracker, but also relative position between the two trackers could be evaluated
(Luckett et al., 2019).

The distance between the laser rangefinders a which were placed outside the tracking
area was measured by pointing one rangefinder at the tripod of the other (Luckett et al.,
2019). In each location of the tracker tripod, the mean distance of five measurements
between each rangefinder and the tracker tripod (b and c) was calculated by aiming
at the central shaft of the tripod. Before, the measurements were corrected by the
diameter of the Vive tracker’s tripod shaft (Luckett et al., 2019). The height of the
Vive tracker remained the same for all measurements. x and z coordinates based on the
rangefinder measurements were then calculated for each measurement with the law of
cosines (Luckett et al., 2019):

α = cos−1 a2 + b2 − c2

2ab
x = b cos a z = b sin a

These x and z values represent a real-world position of the tracker tripod that is
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Figure 2.17: a) laser range finders and Vive tracker mounted on tripods to compare
reported tracker position with calculated position with the help of the laser rangefinders b)
tracked positions compared to laser-measured positions in smaller tracking area (Luckett
et al., 2019)

parallel to the floor. To compare these coordinates with the reported x/z coordinates
of the Vive tracker, they have to be aligned by multiplying each coordinate in the laser-
measured set with a rotation matrix R and by adding a translation vector T (Luckett
et al., 2019). This way, the squared positional error between the corresponding points in
each data set are minimized. This error can be calculated by finding first the centroids
PV and PL representing the mean position of the Vive-tracked and laser-measured points
for each measured location (Arun et al., 1987). Next, the 3×3 matrix of the co-variances
of the positions is calculated, where P i

V and P i
L represent the individual coordinates in

each set (1). To determine the left- and right-singular unitary matrices U and V T where
T stands for the matrix transposition, singular value decomposition is performed on
H(2):

H =
∑

i

(P i
V − centroid(PV ))(P i

L − centroid(PL))T
(1) H = U

∑
V T (2)

The rotation matrix R is then given by R = V UT , while the translation vector T is
determined by T = −R−1centroid(PL) + centroid(PV ) (Luckett et al., 2019). Finally,
each point in L is rotated and translated using R−1 and T to get the transformed points
L′:

L′
i = R−1P i

L − R−1centroid(PL) + centroid(PV )

As the height of the Vive tracker on the tripod remained unchanged during all mea-
surements, the calculated error in these trials represents only the x- and z coordinates
(Luckett et al., 2019). Results (see Table 2.2) showed that the average error remained
below 1cm and did not exceed 1.5cm. Amsters et al. (2019) came to a similar result with
a mean error of 8.05mm in the reported x-z position of a Vive tracker that was moved
along a randomly chosen path with a mobile robot. This led them to the conclusion
that the Vive could even be used as ground truth if accuracy in the centimeter range is
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Table 2.2: Error in the Vive-tracked x-z positions in both evaluated tracking areas
assuming the laser-measured positions as correct positions. Relative error represents the
error in the distance between the Vive tracker on the table and the tracker mounted on
the tripod(Luckett et al., 2019)

Large Area Small Area
Absolute Relative Absolute Relative

Mean distance (mm) 7.43 7.56 4.92 5.41
Max distance (mm) 12.65 14.25 14.98 13.07
stdev (mm) 2.77 2.81 2.85 2.67

sufficient. As ground truth, a Krypton K600 coordinate measurement machine based on
tracking of infrared LEDs with three infrared cameras was used, providing an accuracy
between 60 μm 190 μm. Unfortunately, Niehorster et al. (2017) did not publish such
metrics of their Vive HMD evaluation for comparison, but from visual comparison with
Figure 2.15 it seems that the accuracy for the Vive tracker observed by Luckett et al.
(2019) could be considered as higher, at least in the more remote positions of the grid
(see figures 2.15 and 2.17 for comparison).

Unlike Niehorster et al. (2017), not only the positional, but also the rotational ac-
curacy was observed by Luckett et al. (2019). For this purpose, the laser rangefinders
previously used for measuring positional accuracy were mounted at the ends of a 1/4”
pole. After attaching a Vive tracker approximately at the middle of the pole, it was
attached to a camera tripod as in Figure 2.18. Depending on the rotational axis being
measured, the rangefinders were used to measure the distance to the wall or floor as
a flat reference surface (Luckett et al., 2019). The changing distance to the reference
surface when the tracker is rotated can then be used to calculate the real-world rotation
to compare it with the orientation reported by the tracker (Luckett et al., 2019). To
measure x-axis orientation, the rangefinders were pointed downwards and the x-axis of
the tracker was oriented orthogonal towards the pole. To measure y-axis orientation, the
tracker was rotated by 90° and the procedure was repeated. For measuring the z-axis,
the rangefinders were rotated by 90° so that they point at a wall (Luckett et al., 2019).
The distance between rangefinders and reference surface was approximately 60cm, while
the distance between the two range finders was approximately 61.1cm.

In a total number of 10 trials per axis, the apparatus was rotated to a randomly
chosen angle and the Vive-reported angle and the rangefinder-measured distances were
recorded (Luckett et al., 2019). For each trial i a rotation matrix Ri was then calculated
with the xyz angles from the logging script. With that matrix, the orientational change
between consecutive trials can then be calculated (1). The rangefinder-measured angle
for trial i can be calculated with the two measured rangefinder distances a and b and
the distance between the two laser rangefinders d as in (2)(Luckett et al., 2019):

αi,i+1 = cos−1 tr(RiR
T
i+1) − 1
2

(1) βi = tan−1 a − b

d
(2)

The error in percent of the orientation reported by the tracker for each axis was
afterwards calculated as follows(Luckett et al., 2019):
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Figure 2.18: apparatus with tracker an laser range finders mounted on tripod for evalu-
ation of rotational tracking. Distance between the rangefinders and the wall/floor changes
when tracker is tilted(Luckett et al., 2019)

Table 2.3: Error percentage of orientation changes reported by the Vive tracker compared
to laser-measured change(Luckett et al., 2019)

Axis Percent error
x 1.36 ± 0.73
y 1.90 ± 0.30
z 1.74 ± 0.23

|αi,i+1 − |βi+1 − βi||
|βi+1 − βi|

The results in Table 2.3 show that the observed error in reported orientation data
for all three axes remained below 2% in comparison to the real-world angles (Luckett
et al., 2019).

Luckett et al. (2019) also examined the positional tracking resolution of the Vive
tracker. For this purpose, a Vive tracker was mounted on a self-constructed positioning
device with stepper motors and an Arduino Uno. This device was able to work with a
positioning resolution of 157 steps/mm. Its accuracy was verified with a digital caliper
attached to the device’s axis of movement revealing that the device loses maximally
0.1mm for every 5mm of travel (Luckett et al., 2019). As no movements beyond 8mm
were tested on the xz-axis, the positioning error of the device was expected to fall below
0.16mm. In the following trial, The mounted tracker was first moved 5mm along the
x-axis to rule out mechanical backlashes. Afterwards, the tracker was moved 10 times a
test distance, starting from 8mm to 0.03125mm and the reported position was recorded.
The error between reported and real position for each travelled distance then underwent
a two-sample pair-wise t-test to determine the lowest distance at which the error with
a p-level of 0.05 is still statistically significant (Luckett et al., 2019). Results showed
that at a travelled distance of 0.25mm intentional movement could not be distinguished
from tracking noise anymore.

All previously discussed evaluations describe Vive’s tracking algorithm in a static
state. There are however indications that the precision of Vive tracking worsens by
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Figure 2.19: Recorded height at each grid with headset facing along the positive X axis
(a) and negative X axis (b) at a constant physical height of 1.65m. At the black grids, no
measurement was made due to the temporary loss of tracking(Niehorster et al., 2017)

one order of magnitude when the system is used in a dynamic state (Borges et al.,
2018). During their trials with a tracked aerospace robot moving around the x/z axes,
Borges et al. (2018) observed that error in accuracy can vary from a few millimiters
to up to a 802mm in extreme cases in a dynamic state. As reason, they identify the
observation that the Vive puts more weight on the inertial measurements of the tracked
device rather than measurements from the lighthouses to produce a smooth, less-jittered
trajectory for the VR user. While this is well-suited for VR applications, this makes the
Vive poorly suitable for robotics applications, as accuracy and repeatability suffer from
this algorithm (Borges et al., 2018). There is however the opportunity to implement
an alternative tracking algorithm to address these problems. At the cost of less smooth
movement paths and poorer accuracy in a static state, it was possible to outbeat Vive’s
built-in dynamic accuracy by up to two orders of magnitude for(Borges et al., 2018).

Similar observations were made by Astad et al. (2019), where error convergence
took up to 500 seconds when the tracked device was not moved anymore. This caused
an error in the millimetric range if measuring of the position was started before the
measurement error has fully converged.

Tilted Reference Frames

During the evaluation by Niehorster et al. (2017) one problem named tilted reference
frames occurred, which describes the observation that the position and orientation mea-
surements are represented in a coordinate system that is tilted relative to the floor in the
tracked area. This is indicated by a systematically varying height reported by the Vive
as illustrated in Figure 2.19, although measurement at all grid points was performed at
the same height (1.65m).

Because this tilted reference plane used by the Vive is internally consistent, measured
height, pitch, yaw and roll orientations of the headset could be corrected by calculating
a rotation matrix R with the HMD’s known physical mounting height and orientations
to determine the tilted reference plane that is used by the Vive (Niehorster et al., 2017).
The required rotation to correct reported rotation to the predicted physical rotation is
the inverse of this matrix R−1. There are however indications that the tilted reference
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Figure 2.20: a) right-angled apparatus with Vive trackers proposed for correction of
tilted reference frame b) comparison of tracked object height with and without correction
procedure(Peer et al., 2018)

plane changes after a temporary loss of tracking, which makes this calibration procedure
hard to implement in practice (Niehorster et al., 2017).

However, this error can also be corrected in a more automated way by using a right-
angled apparatus (Figure 2.20 a) ) with three Vive trackers to align the orientation
of the virtual floor with the real, physical ground plane so that so that positions and
orientations between virtual and real world match more closely(Peer et al., 2018). As
the three trackers are aligned in a known formation on the apparatus lying on the floor,
their position in the virtual coordinate system can be used to derive the deviation from
physical positioning. With this deviation, an alignment between physical and real posi-
tioning and orientation can be calculated to minimize the tilt error seen by Niehorster
et al. (2017).

In order to implement this correction, a 3 × 3m grid with 0.5m intervals was marked
on the floor of the tracking area, coming to a 7 × 7 grid with 49 points. The apparatus
was then placed with its origin P0 (see Figure 2.20 a) for labelings) on the center point
of the grid, so that the physical positions of the three trackers can be described as

P0 = grid[0, 0, 0] Px = grid[0.5, 0, 0] P0 = grid[0, 0, 0.5]

From these three points, the vectors 	x and 	z can be derived to describe the directions
of the axes. These can be normalized ( î ) to determine x̂ and ŷ (Peer et al., 2018). By
building the cross product of the two vectors, a unit vector ŷ for the y-axis that should
be corrected is calculated (Peer et al., 2018):

	x = Px − P0

	z = Pz − P0
î =

	i∥∥	i∥∥ ŷ = 	z × 	x

The three vectors x̂, ŷ and ẑ then describe a 4 ×4 rotation matrix Mrot that is
required to align virtual and real space (Peer et al., 2018). The matrix Mpos is required
to translate the scene to the origin. The final transformation for correction A can then
be determined by matrix multiplication:
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Mrot =

⎛
⎜⎜⎝

x̂x x̂y x̂z 0
ŷx ŷy ŷz 0
ẑx ẑy ẑz 0
0 0 0 1

⎞
⎟⎟⎠ Mpos =

⎛
⎜⎜⎝

1 0 0 −P 0
x

0 1 0 −P 0
y

0 1 1 −P 0
z

0 0 0 1

⎞
⎟⎟⎠ A = MrotMpos

The result of this transformation procedure was tested by measuring all 49 positions
on the 7 × 7 grid (Peer et al., 2018). The alignment matrix was then calculated as
discussed above by deriving it from one point in the corner. To compare the corrected
result after the application of the alignment matrix, an only partially derived alignment
matrix using only x̂ and P 0 to simulate the 2D rotation around the y-axis was used (Peer
et al., 2018). The variance in tracked object height could be reduced this way from 20cm
to close to 3cm (Peer et al., 2018). This results in a more uniform tracked object height
on all x/z positions on the physical ground plane as can be seen in Figure 2.20 b).

Because of the two phenomena of tilted reference frames and switching bias, Niehorster
et al. (2017) concluded that Vive tracking cannot outbeat high-fidelity tracking systems
such as WorldViz PPT and therefore is unsuited for scientific experiments that rely on
highly accurate tracking data, although it might still be suited for experiments where
less accuracy is required. Regarding precision, Vive Tracking is however competitive to
the in parallel tested WorldViz tracking system as outlined in Table 2.4. It might also
be important to note that the authors conducted their quantitative tests with first-
generation lighthouse base stations and that only the tracking of the HMD was tested,
but not that of the Vive trackers or controllers. A repetition of this quantitative study
with the most current Vive hardware might lead to other results.

Tracking Precision

Niehorster et al. (2017) also analysed jitter in position and orientation data of the Vive
HMD. The precision was reported as high with jitter remaining below 0.02 cm and
0.02°. The precision of the Vive HMD tracking was analyzed by putting the HMD to
the same grid points as for the measurement of accuracy as described in subsection 2.4.4
and taking at each grid point a measurement sample with the HMD facing along the
positive X axis and one along the negative X axis (Niehorster et al., 2017). The RMS
jitter was then calculated for each grid point and measurement (X/Y/Z position, pitch,
yaw, roll) by averaging the two facing directions as no significant differences between
them were found (Niehorster et al., 2017). The RMS jitter results were plotted for
each grid point and the median from all grid point measurements for each measure was
determined.

Table 2.4 shows the RMS jitter median results for each of the 6 measurement di-
mensions from three different test runs with varying Lighthouse distance. It might be
worth noting that the Lighthouse maximum distance recommended by HTC is 5.5m
(Luckett et al., 2019). This possibly explains why in test 4 the RMS noise in position
data dropped by 10%-35% and the median area in the BCEAA ellipses decreased to 65%
compared to test 2 (Niehorster et al., 2017). Overall, the median RMS jitter for each
position or orientation measure remained very low, not exceeding 0.02 cm and 0.02°
respectively. However, is still unclear if the Vive tracking system is per se a low-noise
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Table 2.4: Median RMS jitter of all measurements for each position and orientation
measure with varying Lighthouse distance and a test with the WorldViz PPT tracking
system for comparison (Niehorster et al., 2017)

Tracking system Vive Vive Vive WorldViz
Test number 2 4 5 6
Lighthouse distance (m) 7.45 5 5.66 —
X (cm) 0.0080 0.0064 0.0066 0.0173
Y (cm) 0.0054 0.0049 0.0052 0.0069
Z (cm) 0.0075 0.0055 0.0059 0.0101
Yaw (°) 0.0097 0.0104 0.0045 —
Pitch (°) 0.0111 0.0113 0.0053 —
Roll (°) 0.0114 0.0110 0.0047 —

Table 2.5: Positional RMS jitter of HMD and controllers and HMD relative to each
controller after the temporary loss of tracking averaged from 20 trials (Luckett et al.,
2019)

RMS error (cm)
Lighthouse Distance(m) 7.6 6.3
HMD 1.148 0.793
Left controller 1.442 0.515
right controller 0.915 0.881
HMD relative to left controller 0.42 0.572
HMD relative to right controller 0.427 1.463

tracking system or if the low jitter comes from noise filtering algorithms in the Vive
software (Niehorster et al., 2017).

The positional RMS jitter of the Vive HMD and both controllers after the temporary
loss of tracking leading to the previously discussed switching bias problem was inves-
tigated by Luckett et al. (2019). In two differenlty sized tracking areas, the HMD was
placed on a chair in the middle of the tracking area and the controllers were placed on
the floor next to the chair. After recording 2s of position data for HMD and controllers,
the HMD was covered with a cardboard box for 5s, while the controllers remained in
view for the lighthouses (Luckett et al., 2019). After removing the cardboard, another 5s
of positional data for HMD and controllers were collected. With the collected position
data, the RMS jitter in the reported absolute position of the HMD and the controllers
was calculated as well as a relative RMS jitter calculating the error in the reported
distance between the HMD and each controller (Luckett et al., 2019). Compared to the
RMS jitter that was calculated without loss of tracking by Niehorster et al. (2017) (see
Table 2.4) the resulting RMS jitter was significantly higher as Table 2.5 shows. It also
seems that the relative RMS error is less present than the absolute RMS error.

The spatial spread of the tracker noise in the X − Z position plane was finally ana-
lyzed by calculating the BCEA ellipses with the recorded data at each point and facing
direction (Niehorster et al., 2017). The plotted ellipses in Figure 2.21 show that both
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Figure 2.21: Spatial spread of measurement samples at each grid location (a) facing the
positive X axis and (b) facing the negative X axis. 68% of the data samples for each grid
location are within the boundaries of the ellipse, with a median area of 0.025mm2 for
each BCEA ellipse. The red line indicates 1mm(Niehorster et al., 2017)

facing directions had a similar spatial spread and only small deviations from isotropy
from except for remote locations on the grid (Niehorster et al., 2017).

Similar to the observations for accuracy, there are indications that Vive’s precision
worsens by one order of magnitude in a dynamic state (Borges et al., 2018).

Jitter in positional or rotational data can also be influenced by the surrounding of
the tracking area. For instance, jitter can be intensified by reflections of the IR signal in
the environment, caused by certain materials such as transparent polycarbonate fencing
(Astad et al., 2019).

End-to-End Latency

Niehorster et al. (2017) calculated in their technical evaluation also an end-to-end-
latency of 22ms for the Vive’s HMD. To determine the latency, the HMD was put
on a table in the middle of the tracking area at a height of 1.55m and filmed with a
Casio EX-ZR800 high-speed camera at 480Hz. A video was played on the HMD that
switched to a white screen as soon as a sharp movement of the HMD was detected. The
Vive’s display was clearly visible on the recorded video. The threshold for the detection
of movement was defined by pre-recording 4s of positional and orientation data, from
which the standard deviation values were calculated. The screen was switched white
as soon as any of the current position or orientation measures exceeded the previously
calculated standard deviation by the factor 100. This should prevent that the screen
is turned white simply by noise (Niehorster et al., 2017). The trials revealed that two
screen refreshes were needed by the Vive screen at 90Hz to turn the display white, which
was calculated to a end-to-end-latency of about 22ms. This is slightly above the optimal
value defined by Raaen and Kjellmo (2015) to avoid oscillopsia. However, as the value
of 22ms was estimated pessimistically Niehorster et al. (2017) still approved the Vive a
sufficiently low latency. Caserman et al. (2019) determined with their latency-measuring
tool as described in subsection 2.3.7 a significantly lower latency of 6.71 ± 0.80ms.



Chapter 3

Design and Concept

3.1 Project Setting

3.1.1 Research Project Introduction
Work on this Master’s thesis was conducted as part of two different research projects.
The starting point was given by the project JRC Live that was initiated by the Josef-
Ressel-center for real-time visualization of supply chain networks1 operated by the Busi-
ness & Management faculty of the University of Applied Sciences Upper Austria. Its
research focus lies on the analysis, structural and real-time visualization and fault pre-
diction of supply chain networks of companies and therefore aims to support businesses
to better understand their network. This involves the evaluation and visualization of
numerous aspects of a supply chain network such as

• the structure of the network to show dependencies
• demand and part criticality
• time uncertainties and criticalities in supply chains
• analyzing inventory levels and ranges
• financial stability of the network
• shipment tracking

By developing appropriate tools for those areas of interest, companies shall be enabled
to make profound decisions for improving their network stability. In its final state, it is
aimed that the developed solution is not only able to monitor supply chain networks in
real-time, but also that predictive analysis points users to issues in their network before
they hit the company unprepared.

The second and determining party related to the work of this thesis is the the Hive
research group2 located at the campus for informatics, communications and media of
the University of Applied Sciences Upper Austria. Hive (“Human Interfaces and Virtual
Environments”) focuses on several areas in human computer interaction, data visualiza-
tion and mixed reality. This involves in particular the areas cross-device interaction and

1More details relating the work of the research center for real-time visualization of supply chains can
be retrieved from the website https://www.govisible.org/

2The work and focus of the Hive research group is explained in further detail on the website
https://hive.fh-hagenberg.at/

45
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collaboration, (collaborative) information visualization, virtual and augmented reality
technologies, as well as scientific visualization and immersive analytics.

This thesis is a contribution to one of the research group’s recent projects named
X-Pro. Its main objective is research and development of user-centered methods for
cross-virtuality analytics of production data. This shall be achieved by exploring fluid
and seamless transitions along the continuum of virtual and augmented reality when
interacting with complex production data as co-located and distributed group across
multiple devices including a large-scale wall screen. How to create natural interactions
that feel consistent and seamless when moving between virtualities in this scenario is
one of the questions that shall be answered in the work package related to this thesis.

Before work on this thesis was started, an interactive graph-based prototype for the
exploration of a supply chain network was developed by the Hive research group in
a cooperation with the JRC Live project. This basic version of the prototype that is
further described in subsection 3.1.3 was aimed to support one of the objectives of JRC
Live to identify dependencies in network structures and is used as a starting point for
this thesis.

The objectives of this thesis are composed of requirements in JRC Live and in
particular X-Pro. For JRC Live, the existing prototype for the exploration of a supply
chain network has to be adapted to improve meaningfulness and to reduce cognitive load
while exploring the data. This is aimed at easing sense-making for the group interacting
with the prototype. For X-Pro, it should be demonstrated how spatially-aware cross-
device interaction can create seamless transitions of content between devices and users.
As the collaborative tasks in a rather complex context such as the described scenario
are already difficult to handle for users on its own, there is a high demand for fluid
interaction and sharing techniques across entities(Marquardt et al., 2012).

3.1.2 Dataset
For the supply chain network prototype that had to be adapted, an exemplary dataset
was acquired by researchers of the JRC live project group. The data represent the supply
chain network of the company Voestalpine - an in Austria well-known steel manufacturer
- and were extracted from a Bloomberg database. From the perspective of the company
of interest, supply chain relationships between companies were extracted up to the
third tier, so that in the resulting graph in the prototype nodes until the third degree of
neighbourhood can be analyzed. The dataset can be classified into three main entities:
industries, nodes and links.

Industries

Each company in the dataset is associated with a specific industry. Those industries
are however more complex than a simple attribute, as they are organized in a hier-
archical order with four layers, so that a large number of companies can be grouped
into the same main industry, but still be distinguished with more fine-grained subindus-
tries. A single company is always associated with the fourth layer in the industry tree,
providing the finest granularity. The industry to which a company is associated is deter-
mined by its GICS industry code, which stands for the Global Industry Classifications
Standard, jointly developed by Standard & Poor’s and Morgan Stanley Capital Inter-
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national(Bhojraj et al., 2003). For instance, the company Samsung Electro-Mechanics
Co Ltd is associated with the GICS code 45203015 that can be decomposed into the
sector information technology, industry group technology hardware & equipment, in-
dustry electronic equipment. Instruments & Components and subindustry Electronic
Components with increasing granularity. The dataset contains 152 different industries.

Nodes

A single company in the dataset represents a node in the graph-based supply-chain net-
work prototype and is identified by its ticker, a short combination of letters with which
the company is uniquely identified on the stock market(Head et al., 2009). Additionally
to attributes like company name, country of origin and the corresponding GICS code of
the industry, the dataset contains several financial measures for each company like the
total financial in- and output of this company in the network, total costs of goods sold
(COGS) and capital expenditures (CAPEX) all quantified in US dollars. While COGS
is defined by the variable cost associated with a unit of sale, Capex aggregates the ex-
penditures of a company for long-term investments like machines or buildings (Sawyer,
2009).

Additionally, the dataset contains several graph metrics for each company represent-
ing a node in the network such as degree, betweenness centrality, closeness centrality
and eigenvector centrality which are further described in subsection 3.2.2. These metrics
are static values in the dataset and were pre-calculated for the whole, global network in
the dataset by the JRC Live researchers.

The last relevant node attribute in the dataset is the tier attribute, which specifies
the degree of neighbourhood with the company of interest (Voestalpine) in the dataset.
While for instance the company of interest has a value of zero for the tier attribute, its
direct neighbours in the network are located at tier 1. This information might appear
redundant at first sight, as it can be derived from the graph data. However, competitors
of the company of interest can also be identified with the tier attribute, as they have
also a value of zero for this attribute which differs from the pattern above. The dataset
contains 4870 nodes.

Links

To identify supply chain relationships between companies, a second file was provided in
the dataset that contains besides redundant attributes from the involved nodes for each
connection in the resulting graph the supplier ticker and the customer ticker. While
the supplier ticker identifies the company that is delivering goods, the customer ticker
identifies the company that is receiving goods as part of this connection. This also
specifies the direction of edges in the interactive graph prototype. Furthermore, those
supply chain relationships in the dataset contain three financial measures: CAPEX,
COGS and share customer COGS. CAPEX and COGS, which have already been briefly
explained in the previous section quantify in this context the sum of supplies that can
be accounted to the customer’s COGS or CAPEX respectively in this relationship. The
share on customer COGS measure on the other hand quantifies the relative proportion
of the supplier on the customer’s total COGS. This measure can help to identify key
suppliers which have a relatively high proportion on the customer’s COGS. The dataset
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contains 11645 links.

3.1.3 Existing Supply Chain Network Prototype
The interactive supply chain network prototype that should be adapted and enhanced
by spatially-aware interactions is a browser-based Angular application with which the
supply chain network can be analyzed in an exploratory manner. The graph data from
the dataset are imported from a file in JSON format during startup. For rather com-
putationally expensive operations with the data such as filtering by specific criteria or
value ranges, a NodeJS backend is deployed in the background.

Graph Exploration

The existing application is divided into two main areas as illustrated in Figure 3.1.
The sidebar on the left contains various Angular components for applying filters on the
displayed graph data so that its complexity can be reduced to the specified areas of
interest. The main part of the application is formed by the graph-based visualization of
the supply chain network, which is rendered in an Angular component utilizing D3.js. A
first visual hint on the importance of a node in the network is given by its size which is
coupled with the degree of the node until a configurable maximum size is reached. The
color of the node is defined by its industry. Nodes can be re-arranged by dragging them
onto another area on the screen. As the graph is rendered in D3 with a force-directed
graph algorithm, nodes that are connected to the re-arranged node follow it to the new
position automatically. Users can retrieve details about a node and also a link in an
semi-transparent overlay window over the graph by clicking on the object of interest.
For node details, this overlay window contains a button that opens a sankey diagram
showing the incoming and outgoing edges of the selected node as illustrated Figure 3.2,
so that the flow of supplies between the selected company and its direct neighbours in
the network is visualized.

During initialisation, the graph visualization loads and renders the whole network
until the third degree of neighbourhood to the company of interest is reached. The size
of the graph can be successively reduced by applying filters from the sidebar.

Graph Manipulation and Filtering

Additionally to the free re-arrangement of the graph, users have access to two other
methods of graph manipulation: changing the company of interest and filtering.

The company of interest which is initially set to Voestalpine when the page is loaded
specifies the origin of propagation through the network. Outgoing from this company, the
next nodes and links are looked up. If users decide to analyze the network of another
company, they can change the company of interest by typing its name into an auto-
complete supporting search field at the top of the sidebar as it can bee seen in Figure 3.1.

To reduce the size of the displayed graph to only relevant elements for the current
analysis task, users have the possibility to apply several filters on both, nodes and links
in the graph. The first filters following the company of interest in the sidebar are the
filters for node degree and relative COGS. After expanding one of those filters, users
can define minimum or maximum thresholds for the underlying attribute. For instance,
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Figure 3.1: Screenshot of the prototype’s state before work on it was started. Sidebar
with several filters on the left, large canvas with the supply chain graph and opened node
details window for the company of interest

Figure 3.2: Screenshot of the sankey diagram that can be viewed if the node details
overlay window is expanded showing the inflow from supplying companies on the left and
the outflow to companies supplied by the company of interest on the right, while the
selected nod is in the middle of the diagram
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Figure 3.3: Left: interactive graph prototype running as a demonstrator application on
a 85” touch-enabled Sharp wall screen during the opening of the Josef-Ressel-center in
Eberstalzell, Austria. In the foreground one of the movable workstations can be seen.
Right: fused sketch of the two physical settings of JRC Live and X-Pro from a bird’s-eye
perspective.

users can define a minimum node degree of 50, so that only prominent nodes in the
network with many connections to other nodes are shown. The relative COGS filter on
the other hand can be used to omit links where the share on customer COGS attribute
is outside a certain threshold. This filter can be used to focus only on key suppliers of
a company that usually have a relatively high value for this attribute.

The last filter for industries enables users to focus on specific industries or subindus-
tries during their analysis of the network. Those industries are organized in an ex-
pandable tree view in the sidebar in which users can deselect irrelevant industries or
subindustries. By default, all industries are shown.

3.2 Requirements Analysis and Design Process

3.2.1 Physical Setting
In the JRC Live project, the prototype is planned to be operated in a control room
surveying the logistics network of a company. This room is equipped with a large-scale,
touch-enabled video wall and several movable PC workstations for individual activities.
At the time of writing, a 85” Sharp wall screen as in figure Figure 3.3 was used as an
interim solution until the delivery of the video wall. Interaction with the screen content
is possible by either multi-touch or by using a stylus.

The X-Pro project uses a similar setting as basis. Interactive visualizations of pro-
duction and network data are expected to be operated on a large-scale touch-enabled
wall screen with at least 98” screen diagonal. The final hardware was also in this project
still evaluated at the time of writing and as an interim solution a 85” Microsoft Sur-
face Hub was used. As the transition between different stages of augmented and virtual
reality is also research focus, Virtual Reality hardware from HTC is already available.
For individual and collaborative tasks between team members, mobile tablet devices are
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used additionally.

3.2.2 Use Cases and Common Tasks
Informal interviews with four researchers from JRC Live and two representatives from
industry partners of the project have shown that analyzing a supply chain network
attempts to answer a wide variety of questions within the network and involves various
distinct sub-tasks. It was agreed by all interviewees that the analysis of a supply chain
network with several thousand nodes and links is a rather complex task that is usually
tackled collaboratively, although the analysis involves also individual sub-tasks whose
results have to be discussed and merged frequently.

Identification of Critical Nodes with Social Network Analysis

The key objective of such a network analysis according to the interviewees is to identify
dependencies, bottlenecks and critical nodes that require instant attention when delivery
problems arise in the environment of the company associated with this node. Although
this is achieved up to a certain degree by manually exploring the network from the
perspective of the company of interest, there have been attempts by the researchers
of JRC Live to operationalize those critical nodes to support their identification. For
this purpose, they utilize several network centrality measures that have originally been
developed for social network analysis (Wasserman, Faust, et al., 1994). These are degree-
, betweenness-, closeness-, and eigenvector-centrality.

Degree centrality which is already used in the existing prototype for adapting the
node size is a local measure that considers only the direct neighbourhood of the node.
It is defined by the sum of incoming and outgoing edges (Gerschberger et al., 2020). A
node with high degree centrality has therefore a high operational load, as it has to cope
with a large amount of inflows and outflows (Kim et al., 2011). Nodes with high degree
are called Popular Nodes in the context of JRC Live research.

Closeness and betweenness centrality on the other hand are global measures and
consider the path length from one node to other nodes in the network (Gerschberger
et al., 2020). Closeness centrality quantifies the the average distance of a node to all
other nodes in a network (Freeman, 1977). A node with high closeness centrality is
therefore within easy reach of many other nodes in the network and can operate more
autonomously because of tendentially shorter paths to customers or suppliers (Kim
et al., 2011). Related to this, betweenness centrality counts the amount of shortest
paths that pass through a specific node (Freeman, 1977). Nodes with high betweenness
centrality therefore have a high influence on network flows because they establish con-
nections to otherwise unconnected nodes or to nodes that otherwise would be connected
by significantly longer paths (Gerschberger et al., 2020). Consequently, nodes with high
betweenness centrality might act as a bottleneck in the network (Kim et al., 2011). In
the context of social network analysis, nodes with high betweenness centrality are called
gatekeepers by JRC Live.

Furthermore, the researchers at JRC Live work with the eigenvector centrality of a
node to determine its importance in the network. A node has a high eigenvetor central-
ity if it is connected to many other nodes that also have a high eigenvector centrality
(Bonacich, 1972). Such companies are critical in the network, as they can cause a domino



3. Design and Concept 52

effect on further critical companies that are connected with it when problems arise (Ger-
schberger et al., 2020). Nodes with high eigenvector centrality are also called influencers
by JRC Live.

The analysis of a supply chain network with centrality measures is finally not limited
to nodes. JRC Live researchers use betweenness centrality also to identify critical edges
in the network. With the term edge-betweenness, the number of shortest paths that are
dependent on a specific edge in the network is quantified (Bonacich, 1972). Therefore, a
node with high edge-betweenness might act as a bottleneck in the network (Gerschberger
et al., 2020). Edges with high edge-betweenness are also called bridges by JRC Live.

Additional Analysis Tasks

Although the application of metrics from social network analysis gives a relatively good
picture about critical nodes and links in the entire network, not all supply-chain-relevant
questions can be answered by them according to the JRC Live researchers. Many rel-
evant relationships and dependencies from the company of interest’s perspective are
still identified by manually exploring the network. Examples for this are identifying
other customers of a supplier and the according delivery volume, companies that are
particularly critical for a supplier, customer or competitor or detecting other clusters.

Competitors are an additional field of analysis and competitor networks are fre-
quently compared with the own network to identify common customers, other intersec-
tions or companies that are exclusively supplied by one of the compared companies in
the two networks.

Further activities involve impact analysis when a certain node or link in the network
fails to deliver so that an estimate about consequences in the flow of goods in the network
can be made. Frequently, teams analyzing supply chain networks also focus on specific
areas or nodes and links with a certain minimum relevance to reduce complexity in the
network. This involves filtering irrelevant industries or supply chain relationships below
a certain financial volume.

3.2.3 Problem Areas
The discussions with the researchers showed that the existing prototype is a helpful tool
for exploring a supply chain network, but also that it lacks some key information and
features that are either commonly used during the analysis of a network or that would
support usability and user experience in this rather complex collaboration task.

One area that has to be addressed is the missing possibility to identify and compare
competitors and their networks with the network of the current company of interest as
this is a frequently occurring task when analysing supply chain networks as described
in the previous section. In the existing protoype, there is no possibility to select and
add competitors to the current view and no facility to compare different networks, for
instance the network of the company of interest and the network of one of its competi-
tors.

Another area that needs attention is the incomplete integration of centrality mea-
sures from social network analysis, as these provide important metrics for analysts to
evaluate the network. As described in subsection 3.1.2, the centrality measures are stat-
ically loaded from the dataset. If only a subset of the whole network is analyzed in the
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dataset, these global metrics are not consistent with the selected data. As the existing
interactive prototype allows several ways of filtering nodes and links in the analyzed
network as outlined in subsection 3.1.3, the current centrality measures are incoherent
with the current view of the prototype as soon as a filter is applied. Furthermore, only
parts of the centrality measures are immediately visible in the prototype, which makes
it difficult to identify critical nodes quickly. Only for degree centrality there is a visual
hint in the graph as it is coupled with the node size. All other centralities can only be
retrieved in details windows.

Considering cognitive load when the whole network is rendered at the beginning
there is also room for improvement. While this might be helpful to show the complexity
of the network and to identify rough structures and clusters, this poses several prob-
lems from the user’s perspective. Besides the increased rendering time for the graph
visualization, such a large initially shown network exposes the user also to increased
difficulties in reading and comprehending details of the graph and offers no possibility
for explicit navigation through the graph to support sens-making (Herman et al., 2000).

Another major aspect of supply chain network analysis that remained unaddressed
until the start of this thesis in the scope of the X-Pro project is that this is as already
mentioned in the previous section a collaborative task in which multiple, co-located
team members split up the problem into sub-tasks. Results are exchanged and discussed
frequently to compose a complete view on the network. During work on this task,
there have to be expected frequent switches in coupling styles between loose and tight
collaboration when working on such complex tasks as a team as studies with similar
settings have shown (Neumayr et al., 2018). This creates the need for efficient and fluid
interaction methods to share and exchange content between team members and the
devices they are using as the task itself is already complex enough (Marquardt et al.,
2012).

3.3 Prototype Enhancements
Besides the need to add natural and fluid interaction modalities across multiple devices,
additional adaptions of the prototype derived from the problems described in the pre-
vious section are necessary to answer all questions that might arise during the analysis
of a supply chain network. These adaptions are outlined in the following sections.

3.3.1 Adding Graph Navigation
As discussed in subsection 3.2.3, loading the entire graph resulting from the dataset
at once introduces a high risk for cognitive overload and impedes the comprehension
of the graph by users. To reduce this load, only the company of interest and its direct
neighbours in the network should be loaded during initialisation. This results in a star-
shaped graph as sketched in Figure 3.4 that can be further expanded as required.

To open further parts of the network that are of interest, a method similar to prop-
agation selection that was originally designed for path finding tasks in complex graphs
seems appropriate as it has proven to be faster for both, individual and collaborative
navigation through a network in a user study (Prouzeau et al., 2017). By tapping once
on any node in the network, its direct neighbours are highlighted. By tapping it n times,
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Figure 3.4: Left: sketch of the new initial view of the graph after selecting the yellow-
highlighted node with opened node details window after selection. Right: In the details
window, the direct neighbours of the highlighted node can be added to the graph with
the ”+”-button or if already contained in the graph removed with the ”-”-button.

all nodes that are within the n-th degree of neighbourhood are highlighted. This can be
adapted, so that instead of highlighting the next tier of neighbouring nodes originating
from the tapped node, this tier can be added or removed in the network with buttons
for expanding or collapsing the next degree of neighbourhood of the selected node as
illustrated in Figure 3.4. This can be enhanced by a third button to make the tapped
node to the company of interest so that the perspective of the graph is changed. For
better traceability of the navigation path, nodes that were expanded before should be
labelled in the graph.

3.3.2 Adding Support for Competitors
As described in subsection 3.2.2, comparing networks of competitors and finding inter-
sections with the network of the company of interest, is a major sub-task in supply chain
network analysis, but lacks support in the current implementation of the prototype. As
the information which nodes are competitors to Voestalpine is already in the dataset,
a multi-selection dropdown field for the selection of one or more competitors of the
company of interest can be added as illustrated in Figure 3.5.

After the selection of a competitor in the dropdown field, this company including
its direct neighbours in the network should be added to the already existing graph. If
the selected competitor has no intersection with the already explored network, it will
be visible as a separated graph as competitor E in Figure 3.5. If the competitor is
deselected, it should be also removed from the graph with its direct neighbours as long
as it is not part of the previously composed selection. For better identification, nodes
that represent selected competitors should also be labelled in the graph.

3.3.3 Complete Integration of Centrality Measures
As outlined in subsection 3.2.2, applying centrality measures on the currently evaluated
section of a supply chain network is a substantial part of the analysis by the JRC Live
researchers. A significant improvement in the usability of the prototype can therefore
be expected when the centrality measures do not originate from static values in the
database, but are instead re-calculated every time when the graph was manipulated so
that the number of links or nodes has changed. After the re-rendering of the graph after
manipulation, it can then be ensured that the centrality measures are coherent with the
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Figure 3.5: Sketch of the competitor selection facility. Additionally to company X, which
is the company of interest competitors A and E were added to the graph. While there are
intersections between competitor A and the company of interest, there are no connections
to competitor E.

Figure 3.6: Sketch showing additionally the 3 most critical nodes for each centrality
measure at the top of the graph visualization. For each category, the view can be expanded
to show more critical nodes. Nodes or links that belong to the three most critical entities
of the network in any category are labelled or highlighted respectively.

graph being displayed.
Furthermore, the visibility of nodes and links that might be critical in the network

according to the centrality measures, should be improved to support the analysis task.
For this purpose, the nodes and links should be ordered by each centrality measure
after their re-calculation, so that a configurable number of top nodes or links for each
centrality measure can be displayed in a separate area close to the network as illustrated
in Figure 3.6. On demand, there should be the possibility to retrieve more top nodes
or links for each centrality. Although labels should be used sparingly to avoid visual
clutter, the top nodes for each centrality should be labelled in the graph so that they
can be identified more efficiently. For edge betweennwess centrality which has to be
applied on links, the most critical edges could be highlighted with another color.
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3.4 Spatial Interactions

3.4.1 Selection of Interaction Methods
Although the adaptions of the prototype discussed in the previous section make a signif-
icant contribution to improving the usability of the prototype for the researchers of JRC
Live, they leave the need for natural, fluid interaction and content sharing techniques
across multiple devices that was identified by Marquardt et al. (2012) unaddressed. In
literature, a large bandwith of cross-device interaction techniques simplifying collabo-
rative tasks between users, their devices and a large screen can be found. For instance,
mobile devices can be used as personal workspace for users in which details or sub-
sections of the data on the large display can be shown (Voida et al., 2009; von Zadow
et al., 2014). Other spatially-aware prototypes utilize mobile devices to control views
on a large display and to transfer contents to it (Olwal et al., 2011) or to transfer and
arrange data objects from a distance (Chung et al., 2014; Langner et al., 2016).

After the evaluation of related prototypes from literature, several possible spatially-
aware interactions that could not only improve the collaborative network exploration
for JRC Live, but also act as demonstrator applications for X-Pro were sketched with
fellow students and research staff. At the beginning of this brainstorming process, no
constraints from the research projects were considered to produce a wide variety of
solutions as a base for further discussions.

From all discussed and sketched interactions, two were selected for implementation,
which are further described in the following two sections. For the selection, different
criteria were applied. The interactions should be realizable with technologies that are
preferably not experienced as invasive by their users. Furthermore, as parts of the pro-
totype will be re-used in the context of the X-Pro project, the interactions should
be preferably be implemented with tracking hardware that is already available in the
project for research along the continuum of augmented and virtual reality. Finally, dur-
ing interviews with researchers from JRC Live and X-Pro it emerged that missing fluid
and natural content exchange between devices was the most dominant pain point for
the collaborative network analysis task in this setting. This led to the decision to fo-
cus on cross-device interactions that support this task during the implementation of
demonstrator interactions and to discard other sketched approaches like controlling the
wall screen visualization with gestures from a distance. Sketched interactions that were
discarded together with a brief explanation can be found in Appendix A.

3.4.2 Details on Demand
As the name already indicates, the Details-on-Demand interaction follows a similar prin-
ciple as the Details-on-Demand interaction of the GraSp prototype that was described
in subsection 2.2.2. It is intended to open a details view of a node that was previously
selected on the wall screen to a user’s mobile device for further analysis.

The scenario assumes that one or more users are interacting with the graph visu-
alization being displayed on the wall screen. They stand directly in front of the wall
screen and are therefore located in the personal interaction zone as defined by Vogel
and Balakrishnan (2004) and form a f-formation as described by Kendon (2010) with
the wall screen as illustrated in Figure 3.7 1). If a user selects a node on the wall screen
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Figure 3.7: Storyboard of the details-on-demand interaction. User is standing front of
the wall screen, located in the personal interaction zone and forming a f-formation with
the wall screen (1). The user selects a node on the wall display by touch interaction (2)
and the details view of the node with the sankey diagram is opening automatically on the
user’s tablet device (3)

by tapping on it, a detail view about the selected node should be opened on the mo-
bile device that he or she is currently using. If the user does not carry a mobile device
or the mobile device is not part of the f-formation with the wall screen because the
user holds the mobile device down for example, no details view will be opened. This
interaction requires a spatial association between the selected node on the wall display
and the mobile device held by the user who selected this node, so that the details view
can be opened on the right mobile device if multiple users are located in the personal
interaction zone with their tablets.

The details view that should be opened on the mobile device consists of the node
attributes outlined in subsection 3.1.2 at the top section of the mobile device display
and a sankey diagram showing the inflows of the selected node on the left and the
outflows of the selected node on the right, while the selected node itself is in the middle.
The thickness of the in- and outflows is defined by the financial volume of this supply
chain connection. The sankey diagram can also be opened on the wall screen in the
existing prototype by expanding it in the node details windows that is opened after
the selection of a node on the wall screen. However, opening it instead on the nearest
mobile device after selection has the advantage that it can be viewed immediately after
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selection and used for further individual analysis. Furthermore, the sankey diagram does
not necessarily have to be opened on the wall screen, as it consumes a large proportion of
the available screen space in the existing prototype and visually clutters the wall-screen
view.

3.4.3 Tablet-to-Wall-Screen Gesture
The Tablet-to-Wall-Screen gesture was designed following a similar principle as the
Hold-To-Mirror gesture by Marquardt et al. (2012) that was described in subsection 2.2.1.
It should help users to share the current view of their mobile device showing a network
or a node details view including a sankey diagram with other users on the wall screen
in a fluent and natural way.

Unlike the Details-on-Demand interaction, this gesture is designed to work also from
a distance. If the user and his or her mobile device are located in the personal or subtle
interaction zone as defined by Vogel and Balakrishnan (2004) and the user is establish-
ing an f-formation between the mobile device and the wall screen, this interaction is
available. F-formation in this context means that the user stands in front of the wall
screen in an arbitrary angle and holds the mobile device in an angle of about 38° so that
it is oriented towards the wall display and the mobile device display is facing the user
as indicated in Figure 3.8 (1). This definition of a f-formation differs from the original
definition by Ciolek and Kendon (1980) in its scale, as the interaction should also be
available from a distance of about 1.5 - 2 meters so that it can also be used in the subtle
interaction zone.

If the user is forming such a formation between mobile device and wall screen and
intends to share the current mobile device contents, the mobile device display is tilted
towards the wall screen, which corresponds to an angle of roughly 130° as illustrated in
Figure 3.8 (2). At this moment, the visualization area of the mobile device containing
the current graph or details view are captured leaving out irrelevant parts for sharing
such as sidebar and header for transmission to the wall screen. Unlike the hold-to-mirror
gesture however, the mobile device view should not be opened in full-screen mode on
the wall screen. Instead, a movable overlay window similar to the existing node details
window containing the captured mobile device view should be opened in the graph
visualization area of the wall screen approximately in the screen area where the mobile
device display was pointing to after completion of the gesture.

This view can be re-arranged by dragging it on the wall screen so that relevant
parts of the network currently shown on the wall screen can be viewed in parallel for
comparison. It should be also possible to transfer multiple views from mobile devices so
that they can be re-arranged for comparison on the wall screen as illustrated in Figure 3.8
(4). This addresses the requirement to efficiently merge results from individual tasks for
further discussion.
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Figure 3.8: Storyboard of the Tablet-To-Wall-Screen gesture with two users standing in
front of the wall screen(1). Left user shares his or her tablet content by tilting the tablet
display towards the wall screen (2). The same interaction is performed by the user on the
right (3). Both networks previously analyzed individually on the tablet are now visible
on the wall screen for comparison (4).

3.5 System Architecture

3.5.1 Spatial Knowledge Model
To successfully implement the demonstrator interactions specified in the last two sec-
tions, a tracking system is required that is able to provide spatial data about mobile
devices with six degrees of freedom: x-,y- and z-position in the tracking area as well as
pitch, yaw and roll angles. If the mobile devices are not currently unused, the approxi-
mate position of users can be determined indirectly with the position data of the mobile
devices.

To control which interaction is currently available, it is necessary to know in which
interaction zone the mobile device is currently located. While Details-on-Demand is
only available when the mobile device is within the personal interaction zone, Tablet-
to-Wall-Screen is also available in the subtle interaction zone, so that it can be used
from a distance. This would at least require a two-dimensional coordinate of the tracked
device containing the position along the X- and Z-axis within the tracked area. However,
for the approximation on which part of the screen the tablet display was pointing when
using the Tablet-to-Wall-Screen gesture, also the X-coordinate of the tracked tablet is
required so that a raycast from tablet to wall screen can be calculated properly. This
makes all three dimensions in the underlying spatial knowledge model relevant.
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Figure 3.9: Drawing illustrating pitch, yaw and roll orientation originating from aviation
applied on the rotational axes of a tablet

For the Tablet-to-Wall-Screen interaction it is required to detect whether a device
and indirectly its user is forming a f-formation with the wall screen. This requires the
tracking of at least two of three orientation angles, which are illustrated for better clarity
in Figure 3.9. While the orientation around the X-axis (pitch) is needed to determine
whether the user is holding the tablet in an angle that allows him or her to look at
the display during interaction so that it can be considered as part of the o-space in the
f-formation, the rotation around the Y-axis (yaw) is needed to determine the angle in
which the tablet is oriented towards the wall screen. From this angle it can be determined
whether the tablet is currently facing towards the wall screen and therefore forming a f-
formation with it or if the user maybe turned away from the screen. For the second step
of the interaction which is pointing the tablet display towards the wall screen however,
all three orientational degrees of freedom are needed to determine the approximate wall
screen position for opening the tablet content there.

The implementation of these spatial concepts in the demonstrator application could
be bundled into an API together with additional spatially-aware interactions in future
work for other applications that might be developed in the future. Based on the im-
plemented demonstrator interactions, this could include events for transitions between
the interaction zones defined by Vogel as well as events for the detection of f-formations
between tablet devices and a wall screen. This would contribute to the concept of f-
formations and micromobility defined by Marquardt et al. (2012).

3.5.2 System Components
For the selection of the appropriate tracking hardware, with which all demonstrator
interactions can be implemented successfully, constraints from the X-Pro project have
also to be considered. As already mentioned, this project involves also research with
virtual and augmented reality prototypes that will be deployed on VR hardware from
HTC. As this company also distributes Vive trackers as described in subsection 2.4.1
which make it possible to track any physical artefact on which the tracker is mounted
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Figure 3.10: Schematic illustration of the involved system components with the example
of two tracked tablets.

with 6 degrees of freedom and sufficient accuracy and precision, the decision was made to
attempt the implementation of the spatially-aware demonstrator interactions with this
hardware environment, so that the tracking infrastructure that is already provided for
the tracking of virtual reality headsets and controllers can be re-used. The Virtual House
of Medusa prototype that was outlined in subsection 2.4.2 can be interpreted as a proof
of concept that tracking tablet devices with Vive trackers is possible, although the used
mounting position on the backside of the tablet might not be ideal from the tracking
perspective, as the tablet limits the field of view of the Vive tracker and increases the
probability for occlusion between Vive lighthouses and the tracker. Therefore, at least
one alternative mounting position for the tracker on the tablet will be evaluated during
implementation.

Concerning the required software architecture, the existing prototype’s components
can be re-used, but have to be enhanced with additional interfaces and new components.
An overview of the required software architecture with an exemplary number of two
tablets is illustrated in Figure 3.10. The already existing NodeJS backend will have
to be enhanced by additional endpoints for the new graph navigation, so that nodes
and links of n-th degree of neighbourhood can be retrieved for a node, as well was
new endpoints to retrieve competitors of a specified node. Furthermore, the dynamic
calculation of centrality measures will have to be added. Moreover, while the current
prototype backend retrieves its network data from a JSON file during initialisation of the
backend, this data should be migrated to a database to improve backend performance,
as this solution has proven to be rather weak in performance during startup when the
whole network is loaded initially.

Similar to the NodeJS backend, the existing Angular client application that is run-
ning in the browser on the wall screen or tablet can be re-used, but has to be adapted
as outlined in section 3.3. Furthermore, the angular client will have to be coupled with
a new application (named VR application in Figure 3.10) that is managing the spatial
tracking of tablets with the Vive trackers. Via this new interface, client application
instances will receive notifications when they have to adapt their view after a certain
spatial interaction was performed. Similarly, client applications will have to send noti-
fications to the new VR application, for instance when a node was pressed on the wall
screen so that the VR application can determine the closest tablet device.

The new VR application that has to be implemented is no Virtual Reality appli-
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cation as such as the VR headset is not used and not any 3D graphics are involved.
However, it has to manage the tracking of Vive trackers that are only addressable from
a VR application and are used for spatial tracking of the tablets in a non-VR environ-
ment in this scenario. The detection of interaction zones, f-formations and additional
gestures will have to be implemented in this application. Furthermore, the mapping
between physical tracker and Angular client instance as well was a connection manage-
ment between client applications and the VR application so that notifications can be
distributed without delay will have to be implemented in this component.



Chapter 4

Prototyping and Implementation

4.1 Hardware and Physical Setup

4.1.1 Hardware Environment
As VR hardware which provides the basis for the tracking functionality in this prototype,
a HTC Vive Pro Full Kit purchased in January 2020 was used. This set contains a Vive
Pro headset, two hand controllers and the second-generation Vive lighthouses. The
headset is equipped with a 3.5” AMOLED display providing a resolution of 1440× 1600
pixels per eye, a refresh rate of 90Hz and a field of view of 110 degrees (HTC Corporation,
2020). Although the headset is not actively used in this prototype, it is required to start
the VR application that operates the Vive trackers. Similarly, the hand controllers are
not actively used in the prototype, but were used during evaluation to start measurement
cycles.

The Vive hardware can be addressed by applications via Valve’s SteamVR soft-
ware environment. As hosting machine, a PC with an Intel Xeon E5 CPU operating
at 3.20 GHz, 16GB RAM, a Radeon RX 580 GPU and a 512GB SSD drive operating
on Windows 10 was used. Except the graphics card, this configuration fulfills the min-
imum requirements that are specified on the HTC website. The used graphics card is
not on the list of officially supported GPUs, but has similar specifications as officially
compatible GPUs and no issues were observed during prototyping and development.
Two second-generation Vive trackers as described in subsection 2.4.1 for the tracking of
tablet devices complete the VR-related equipment.

The host PC for the VR hardware was also used to operate the NodeJS backend and
to host the Angular web client application. However, to not further increase the load on
the host PC, the database containing the supply chain dataset was deployed on Amazon
Web Services. Furthermore, the 84” Microsoft Surface Hub wall screen was connected to
this PC to operate the wall screen instance of the Angular client application. This wall
screen provides multi-touch capabilities and was operated at a resolution of 3840×2160
pixels.

The mobile instance of the Angular application for the graph visualization was tested
on three different tablets. Two iPad Air 2 devices with a 9.7” multi-touch widescreen
providing a resolution of 2048×1536 pixels, a 64bit A8X processor and 16GB of storage
were used. Those rather compact tablet devices have a height of 240mm, width of

63
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Figure 4.1: Vive tracker attached to tablet device with tripod mount. On the two pictures
on the left, attached to the iPad Pro at backside and on top edge respectively, on the two
pictures on the right on the iPad Air

Figure 4.2: Close-up pictures of the tracker mount on the tablet showing the offset
between tracker and tablet caused by the used tripod mount. On the left, offset when
using the backside mounting position, on the right offset when using the top edge position.

169.5mm, depth of 6.1mm and a weight of 437 grams (Apple Corporation, 2019a). As
additional device, an iPad Pro 2nd generation with a 12.9” multi-touch display providing
a resolution of of 2732×2048 pixels, a 64bit A10X Fusion processor and 512GB of storage
was used. This rather large-scale tablet has 305.7mm height, 220.6mm width, 6.9mm
depth and a weight of 692 grams (Apple Corporation, 2019b).

4.1.2 Tracker Mounting Positions
The Vive trackers were mounted and tested at two different positions on the tablet
devices: on the backside and on the top edge of the tablet. For the stable attachment at
both positions, a tablet tripod mount with two 3/4” screw threads was used that allowed
it to attach the Vive tracker at both positions when the tripod mount was placed around
the tablet device. Both constructions can be seen in Figure 4.1. The tripod mount and
the Vive tracker add a weight 209 grams to the tablet, from which 120g come from the
tripod mount and 89g from the tracker. This results in a total weight of 901 grams for
the iPad Pro and 464 grams for the iPad Air.

The usage of the tripod mount creates an offset between the tracker and the tablet as
can be seen in Figure 4.2, which is 4.2 cm for the backside mount and 3.8 cm for the top
edge mount. While it appears that this offset makes the apparatus less handy, this has
beneficial effects for the reliability of tracking as the maximum field of view of 270° of the
tracker is less limited by the tablet device. The offset ensures that the tracker’s antenna
feed point is located at least 30mm away from metallic surfaces such as the iPad’s
aluminium backside cover so that this point in the HTC developer guidelines outlined
in subsection 2.4.1 is met. During first functional tests, the backside mount position was
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tested by attaching the tracker directly on the backside of the tablet with double faced
adhesive tape which leaves only a 180° field of view for the tracker. Although this was
a usable solution during prototyping, tracking reliability improved significantly after
using the tripod mount. However, the field of view improved only slightly by using the
tripod mount for the backside position. While along the Y-axis of the tablet the field
of view for the Vive tracker increased by 45° as through the mounting of the tracker on
the upper third of the backside only the bottom field-of-view was blocked, the field of
view along the X-axis of the tablet only improved minimally because of the width of the
tablet. Applying the formula from subsection 2.4.1 led to a field of view of 180.42° when
using the iPad Pro and 180.55° when using the iPad Air, as the comparatively large
tablet surface still covers a large proportion of the field of view along the X-axis(θ). This
indicates that the improvement might primarily come from keeping the tracker away
from the iPad’s metallic surface.

4.2 Enhancements on Existing Prototype

4.2.1 Database Integration
As outlined in subsection 3.5.2, the current prototype retrieves its dataset by loading a
JSON file from the file system. This is a rather low-performance solution during startup,
as especially after adding the graph navigation feature, only parts of the network are
needed for the current visualization. As the tier-wise propagation through paths of the
network furthermore results in extensive querying of the dataset and researchers from
JRC Live requested also an import facility, the dataset was migrated to a PostgreSQL
database. The database with engine version 11.5 was hosted on Amazon Web Services
with 2 CPUs and 1GB of memory.

Data Model

The data model in the database is closely oriented towards the entities of the dataset
described in subsection 3.1.2 and contains a table each for industries, nodes and links.
The corresponding ER diagram can be seen in Figure 4.3 and a link to the dabase DDL
is provided in section B.1.

In the industry table, the GICS code explained in subsection 3.1.2 forms the pri-
mary key (industry_id). The textual description to which sector, industry type, in-
dustry and subindustry this GICS code belongs to are stored in the other columns for
reach record. This could be further improved, as it causes some redundancies, but has
not been an issue as this is a rather small table with 152 records.

In the node table, the supplier ticker explained in subsection 3.1.2 forms the primary
key (node_id). Additionally to the attributes from the dataset, an attribute showLabel
has been added with it which can be specified that for specific nodes, the label should
always be shown in the graph visualizaton. The tier attribute has been refactored to a
competitor token, which allows better control over the new competitor selection in the
prototype. All nodes having the same competitor token will be considered as competitors
and be selectable in the competitor selection if the current company of interest has the
same token allowing it to store additional competitor relationships in the database, not
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Figure 4.3: ER diagram of the data model showing three entities industry, node, and
egde from the dataset as well was the path_table, entity for improving performance
while propagating through the network explained in the next section.

only for the company of interest. Except the degree centrality, all centrality measures
were omitted as the will now be calculated dynamically. The global degree is still needed
in the database as it defines the thresholds for the degree filter in the prototype.

The edge table contains the links between nodes from the dataset as outlined in
subsection 3.1.2 and has a composite primary key with supplier node (from_node_id)
and customer node (to_node_id), which are both linked to the node table via foreign
keys.

Graph Navigation in Database

To reduce runtime complexity after adding the tier-wise graph navigation so that the
neighbouring nodes and edges of a specified node can be successively fetched by each
degree of neighbourhood, the results of this graph propagation have been pre-calculated
and are stored in an additional table name path_table. With the columns startnode
and depth, all edges that are part of the degree of neighbourhood specified by depth
can be retrieved for the specified node without recursive propagation over the edges of
the dataset. For instance, the query

select * from path_table where startnode='voe av' and depth<=2;

would return all edges for the company of interest that belong either to direct
neighbours (where depth would be 1) or second-degree neighbouring nodes. This pre-
calculation improved speed for graph navigation significantly. The table containing the
pre-calculations was initialized for all nodes in the network until the third degree of
neighbourhood with a table function having the following signature:

function getnextxedges(mystartnode text, maxdepth integer)
returns TABLE(node1 text, node2 text, depth integer, val
numeric, cap numeric, sharecustomercogs numeric)

language plpgsql
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This function collects outgoing from the node specified by mystartnode all edges
recursively until the degree of neighbourhood specified by maxdepth is reached. After
initialisation of the path_table, this function is only called in the backend when in the
table containing these pre-calculations no data could be found.

Database Integration into Backend

The location of the complete source code of the NodeJS backend can also be found in
section B.1. The integration of the database into the existing prototype as implemented
by adding an object-relational-model (ORM) to the NodeJS backend and replacing the
file-based repository with it. As library, Sequelize was used. In the ORM, three entities
mapping the industry, node and edge tables were defined that are located in the
src/repository/ postgres/models folder of the backend. Only the NodeJS backend
has a direct connection to the database while the Angular client application instances
can retrieve data via web service requests.

For the implementation of new features such as the added graph navigation and com-
petitor selection that need to retrieve data from the database, multiple new endpoints
were defined. The two most relevant new routes are located in the network controller
network.controller.js (shortened so that only signature is shown):

1 /∗ retrieve network of next n degrees of neighbourhood as defined in :depth outgoing from
node :id∗/

2 router.post('/:id/:depth', asyncMiddleware(async (req, res, next) => {...}));
3
4 /∗ retrieve competitors of node :egonode if any, anonymize company names if specified in :

anonymize∗/
5 router.get('/nodes/competitors/:egonode/:anonymize', asyncMiddleware(async (req, res

, next) => {...}));

4.2.2 Integration of New Angular Client Features
As conceptualized in sections 3.3.1, 3.3.2 and 3.3.3 new Angular client functionalities
were implemented to improve usability for JRC Live researchers. These adaptions are
documented in the following three subsections. The location of the complete source
code of the Angular client application can also be found in section B.1. The result after
completion of all Angular client adaptions can be seen in Figure 4.4.

Adding Graph Navigation

As sketched in 3.3.1, three additional buttons were placed inside the existing node
details component that allow navigation in the graph by expanding and collapsing the
next nodes and edges by the degree of neighbourhood as can be seen in the node
details window in Figure 4.4. Those buttons that are located in the node-details
component maintain a key-value pair collection with selected nodes and until which
degree of neighbourhood they were expanded. The value is incremented or decremented
according to which button was used so that the according graph can be produced.

This collection is part of the client filter that is stored in the session so that that the
graph can reproduced at any time, also after refreshing the page. After the collection
of expanded nodes was updated, an event is fired that initiates the re-fetching of graph
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Figure 4.4: Screenshot of the prototype after completion of the adaptions. In the graph
which shows Voestalpine as the company of interest, two further nodes (General Motors
and BMW AG) were expanded until the first degree of neighbourhood and four competi-
tors were added to the graph with first degree of neighbourhood.

data in the Angular client’s main component from the backend. This event handler
delegates the event to a globally used filterChange event that is also emitted when
other filters, for instance the node degree thresholds were updated. The collection with
expanded nodes is part of this filter and is passed with the web service request to the
backend in which all parts of the network are composed together by iterating over the
collection and fetching the nodes with required neighbourhood depth from the database
(see program 4.1).

Competitor Integration

Based on the sketch for the competitor selection in subsection 3.3.2, a new Angular
component competitor-form containing a ng-multiselect-dropdown field was added
to the sidebar. Figure 4.4 shows the expanded dropdown with four competitors of
Voestalpine selected. The selectable companies in this dropdown are coupled to the
competitor token of the current company of interest. If a company with another com-
petitor token is focused, the selectable companies in the dropdown are updated with
with companies carrying the same token. If no competitor token was provided for the
company of interest, the dropdown remains empty.

After a competitor is selected in the dropdown, its node representation is immedi-
ately added to the current network in the visualization area together with its first-degree
connections. If it was already part of the displayed network, its first-degree connections
are added if they were not expanded yet. Competitors can be removed together with
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Program 4.1: getNextXTiers()method in the NetworkService function of the backend
to retrieve all required nodes with specified depth

1 this.getNextXTiers = async (fromId, depth, filter) => {
2 const [nodes, links] = await Promise.all([
3 nodeService.getNextXNodes(filter.originNodes[0], filter.originDepths[0]),
4 linkService.getNextXLinks(filter.originNodes[0], filter.originDepths[0])
5 ]);
6
7 for (let i = filter.originDepths.length-1; i > 0; i--) {
8 const thisNetwork = await Promise.all([
9 nodeService.getNextXNodes(filter.originNodes[i], filter.originDepths[i]),

10 linkService.getNextXLinks(filter.originNodes[i], filter.originDepths[i])
11 ]);
12
13 links.push(...thisNetwork[1]);
14 nodes.push(...thisNetwork[0]);
15 }
16
17 return filterService.filterNetwork({ nodes, links }, filter);
18 };

their direct neighbours from the currently displayed network by deselecting them in the
dropdown. However, if they were part of the previous selection, for example because they
are also direct neighbours of the company of interest, only their neighbouring nodes will
be removed. Competitor nodes that were selected in the dropdown are always labelled
in the graph for better identification.

Integration of Centrality Measures

The calculation of graph metrics according to the currently selected network was im-
plemented in the NodeJS backend. The calculation is the last step of post-processing
in the backend after the network data were fetched from the database as specified with
the Http request from the Angular client. This post-processing is implemented in the
filter-service of the backend in the filterNetwork() method. In the first step, All
parts of the network are collected from the database with the key-value pairs in the
Http request body defining the nodes and their degree of neighbourhood which have to
be retrieved. If specified in the Http request, the showLabel attribute is overriden to
false so that no labels will be shown in the graph. Furthermore, company names are
anonymized if specified. Next, the filters specified in the Angular client that are also
part of the Http request body are applied so that the network is shrinked to the parts
that will actually be displayed in the client visualization. After this step, the centrality
measures can be calculated coherently with the graph being displayed in the client ap-
plication afterwards. This is established with the calulateMetrics() method that is
also implemented in the filter-service of the backend and accepts the filtered net-
work as input parameter. The centrality measures for each node and link are calculated
based on this input parameter with the jsnx1 library, which is a JavaScript port of the

1http://jsnetworkx.org/index.html



4. Prototyping and Implementation 70

popular Python graph library NetworkX. The centrality measure attributes of the node
and link objects contained in the input parameter are updated with the result and the
filtered network enhanced by the correct centrality measures is returned back to the
client application.

In the Angular client application, a new component graph-metrics showing the
three most critical nodes or edges for each centrality measure was added and placed
above the graph visualization area as can be seen in Figure 4.4.The four areas in the com-
ponent - one for each centrality measure - are based on Angular’s mat-expansion-panel
component and can be expanded so that a configurable maximum of the currently 40
most critical nodes or edges can be shown. In the graph that is responsible for render-
ing the interactive graph network, adaptions were made so that the three most critical
nodes in the network for each centrality measure are labelled, while the most critical
edges for edge centrality are highlighted green as can be seen in Figure 4.4. This is
achieved by appending the according elements or classes in the svg area containing the
graph that is rendered by D3.js. The following snippet of the draw() method of the
graph component for instance adds the company name as label to the nodes where the
showLabel attribute is set to true according to the criteria explained in this paragraph:

1 const nodeLabel = this._graphContainer.append('g')
2 .classed('app-node-labels', true)
3 .selectAll('.app-node-label')
4 .data(graph.nodes.filter(n => n.showlabel ))
5 .enter()
6 .append('text')
7 .classed('app-node-label', true)
8 .text(d => d.name)
9 .style('font-size', '45px')

10 .style('font-weight', 'bold');
11

4.3 Tracking Backend

4.3.1 Unity Application Overview
The communication with the Vive hardware, registration of devices, distribution of
events and detection of gestures and other spatial events was implemented in a Unity
application. For this purpose, a new VR application was created inside Unity. Although
as already mentioned no VR application in the classic sense was built because the Vive
trackers are utilized outside a VR application in the real environment, this was neces-
sary to gain access to the tracking data via the SteamVR plugin and make use of all the
features of Unity’s graphical editor. Unity uses primarily C# as programming environ-
ment for custom logic in applications, so that all necessary scripts for the interaction
were implemented in C#.

The static spatial relationships are modeled inside a new scene in Unity that rep-
resents the room with the wall screen. The scene contains a WallScreen game object
that consists a canvas object representing the physical display area of the wall screen.
To match the canvas object to the physical wall screen, its dimensions have to be scaled
down to the real dimensions of the screen without any protrusions by the housing for



4. Prototyping and Implementation 71

Figure 4.5: Overview of the tracking application in the Unity editor. On the left, the
required GameObjects can be seen, on the right a Unity scene that models a virtual
representation of the room with the wall screen is displayed.

example. The position of the canvas in the scene has to match with the physical loca-
tion of the screen in the tracking area. The configuration of the tracking area with the
SteamVR wizard involves a step in which the player is asked to point to the computer
screen with one of the controllers. With this step, Unity’s left-handed coordinate system
in which the positive x, y and z axes point right, up and forward, respectively is set.
However, the direction of the axes in the coordinate system are set away from the screen
by Unity, so that the negative axes would be closer to the screen as the positive axes.
To align the positive axes with the expected default viewing direction towards the wall
screen , the controller was pointed away from the wall screen instead.

To address the Vive trackers, the Vive Input Utility plug-in provided by HTC in
Unity’s asset store was used. it contains a ViveCameraRig prefab that contains for each
tracker a separate, numbered game object. The game objects can be duplicated accord-
ing to the number of used trackers. To each tracker game object a TrackerHandler
script was attached during implementation. This script executes several methods for
monitoring the state of the tracker and the detection of gestures in each frame and will
be further described in the following sections. The SocketServer game object is an
empty game object that starts the socket application used for the distribution of events
between devices in a background thread. The socket communication is further described
in subsection 4.3.2. The central coordinating object for interaction-related logic that re-
quires data from more than one tracked device, for instance to determine the closest
tracker to the selected wall screen region is the InteractionsManager game object.
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4.3.2 Message Distribution
The designed interactions require a frequent, fast and efficient message exchange between
the tracking backend application and the involved devices such as the wall screen and
multiple tablet devices. For instance, there is an identification process required that
maps the physical trackers in the Unity application with the Angular client instances
they are used with. For the details-on-demand interaction, the wall screen instance of the
client application needs to notify the tablet client instance that is closest to the pressed
node to open the details view. For the tablet-to-wall-screen gesture, tablet content needs
to be transmitted to the wall screen after gesture detection. For this purpose, a web
socket application was developed that should act as message broker between the multiple
devices and corresponding Angular client instances.

WebSocket Class Library

The web socket application was implemented as a C# class library so that it can be
integrated without much effort as asset in the Unity application and possibly integrated
into multiple spatially-aware applications for re-use. This class library was implemented
with the websocket-sharp2 library, a publicly available third-party framework support-
ing RFC 6455, web socket servers and clients published under the MIT license. This
library covers several low-level implementation details such as the correct composition
of HTTP headers and handshake messages which was in an earlier version implemented
from scratch. A link to the source code of the of the socket application is provided in
section B.2.

The class library contains a singleton TrackingServerSocket class, which can be in-
stantiated by the application using the library as it is done by the ServerSocketHandler
script attached to the SocketServer game object during startup in the awake() method
in the Unity application. During instantiating of the singleton, a configuration file con-
taining parameters such as the IP address and TCP port to be used by the server
socket is loaded and a WebSocketServer object of the websocket-sharp API is instanti-
ated. To this object, new web socket listening endpoints can be added that implement
the websocket-sharp interface (see line 13):

1 public WebSocketServer webSocket;
2 /∗parts omitted ∗/
3 private TrackingServerSocket()
4 {
5 config = new XmlDocument();
6 config.Load("socketConfig.xml");
7 listeningPort = Convert.ToInt32(config.SelectSingleNode
8 ("/config/serversocketport").InnerText);
9 log = new TrackingLogger(config.SelectSingleNode

10 ("/config/loggingconsole").InnerText);
11 serverSocketIP = IPAddress.Parse(config.SelectSingleNode
12 ("/config/serversocketip").InnerText);
13 webSocket = new WebSocketServer(serverSocketIP, listeningPort);
14 devices = new DevicesManager(log);
15 webSocket.AddWebSocketService<MessageGateway>
16 ("/trackinggateway", () => new MessageGateway(log, this));

2https://github.com/sta/websocket-sharp
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17 }

The MessageGateway class that is passed to this new endpoint implements websock-
etsharp’s OnMessage method that is executed when a new message is received by the
server socket. In this method, the custom logic for each message type which are further
described in subsection 4.3.3 is implemented and notifications are dispatched to other
devices as necessary (shortened):

1 protected override void OnMessage(MessageEventArgs e)
2 {
3 try
4 {
5 TrackingMessage tm = JSONHelper.ToTrackingMessage(e.Data);
6 string reply = "";
7 switch (tm.messageType)
8 {
9 case Constants.TrackingMessageTypes.InitConnection:

10 /∗parts omitted ∗/
11 case Constants.TrackingMessageTypes.Identify:
12 /∗parts omitted ∗/
13 case Constants.TrackingMessageTypes.Deregister:
14 /∗parts omitted ∗/
15 case Constants.TrackingMessageTypes.NodePressedWallDisplay:
16 /∗parts omitted ∗/
17 case Constants.TrackingMessageTypes.SendTabletContent:
18 /∗parts omitted ∗/
19 default:
20 log.log("Unknown message type");
21 reply = "[TrackingServerSocket]: unknown message received...";
22 Send(reply);
23 break;
24 }
25 }
26 catch (JsonReaderException ex)
27 {
28 log.log("No JSON data");
29 log.log(ex.ToString());
30 log.log(ex.StackTrace);
31 }
32 }

The class library contains further classes and helper methods for the serialization
and deserialization of messages exchanged via the the socket. Furthermore, with the
DevicesManager class a facility was implemented to maintain a list of active connections
by coupling the session-id of the web socket with the name identifying the physical
device, such as Tracker1 or WallDisplay.

4.3.3 Message Types
Except some debug messages, all data that is transferred via the web socket server is
exchanged in JSON format which can be serialized and deserialized without much effort
in the Angular client application as well as in the Unity application hosting the web
socket. Independent from the type of message, all messages contain several commonly
shared attributes which are defined in the TrackingMessage class in the web socket class
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library. These are fromDeviceID, toDeviceID, messageID and messageType. While
fromDeviceID identifies the device that sent the message to the server socket such
as Tracker1 or WallDisplay, toDeviceID identifies the device that should receive the
message. The messageID attribute uniquely identifies a single message with a generated
UUID and the messageType attribute defines the purpose and further content of this
message. These message type are defined by an enumeration in the server socket code.
The implemented message types are described in the following sub-sections.

Connection Initialization

The connection initialization message is a message that is sent immediately after the
client application has established a connection after the HTTP handshake and serves
primarily debugging purposes. The toDeviceID attribute is not set in this case, as the
message is directed at the socket. The following sample message shows the wall display
instance establishing a connection with the socket:

{"fromDeviceID":"WallDisplay","messageID":"ea14f308-f58b-43d4-9110-557a47f5f3a1","
messageType":0}

Device Identification

The device identification message tells the socket application that is embedded in the
Unity application which physical entity has to be allocated to the web socket session
sending this message. With this information the server socket knows to which web socket
session a message has to be forwarded according to the toDeviceID sent in other mes-
sages by the Unity application or Angular client instances. The toDeviceID attribute
in this message carries the values ”Wall Display” to identify the browser instance that
is running on the wall screen or one of the game object names of the Vive trackers in
the Unity application so that it is known which physical tracker is used with the client
instance. This message is sent by the Angular client after the connection to the socket
server was established and an already allocated device that was previously stored in the
local browser storage was found or when this allocation was changed in the Angular
client application, for instance after the tracker attached to the tablet was changed.
The following example message shows the web socket session identifying as the first
Vive tracker:

{"fromDeviceID":"Tracker1","messageID":"a52bbb83-3056-410e-8a56-2ed53ce3f574","
messageType":1}

Device Deregistration

The allocation between physical entity and web socket session as discussed in the last
subsection can also be removed. This might for instance be necessary when the spatially-
aware features should be turned off for this client instance or when the physical tracker
of a tablet device was changed, so that instead of ”Tracker1” the attached tracker is
identified by ”Tracker2” in the Unity application. The following sample messages show
such a tracker switch where line 1 is the deregistration of the previous tracker and line
2 is the registration for the new tracker:
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1 {"fromDeviceID":"Tracker1","messageID":"b72f62ff-3e84-41e6-b740-1fd1a6d3ff57","
messageType":2}

2 {"fromDeviceID":"Tracker2","messageID":"e30d7a43-639f-491e-8e13-014b1dec582f","
messageType":1}

NodeWallDisplayPressed Event

A message with type NodeWallDisplayPressed is sent by the wall screen instance
of the Angular client when a node in the graph visualization area of the prototype
was selected by touch interaction. This message is needed for the Details-on-Demand
interaction in the Unity application holding the spatial data about trackers so that the
closest tracker relative to the touched area on the wall screen can be determined. As this
requires a conversion from pixel coordinates recorded in the Angular client application
to a physical position on the screen, this message type contains additional attributes
within NodeWallDisplayPressedAttributes that allow this conversion as the following
example message illustrates:

{
"fromDeviceID":"WallDisplay",
"messageID":"922c0b28-d427-4ab1-a1ae-a9167b111493",
"messageType":3,
"NodeWallDisplayPressedAttributes":

{"screenResolutionX":3840,
"screenResolutionY":2160,
"devicePixelRatio":1.5,
"nodeID":"voe av",
"x":892,
"y":1355,
"xAbsolute":1735,
"yAbsolute":1601,
"graphComponentPosition":{"x":843,"y":246},
"detectionTime":1598969387391}

}

The first two parameters screenResolutionX and screenResolutionY contain the
screen resolution of the wall screen in pixels. With the devicePixelRatio attribute, all
reported pixel values can be scaled back to the original resolution, as on large screens
the resolution is often scaled to 150-200%. x and y report the pixel coordinates of
the selected node on the screen relative to the graph component in the angular client,
which has its origin on its lop-left corner. xAbsolute and yAbsolute additionally report
the absolute pixel coordinate of the selected node on the screen by adding the offsets
for the sidebar(x-coordinate) and application header(y-coordinate). Furthermore, the
pixel coordinates of the top-left corner of the graph component are reported with the
graphComponentPosition attribute. For better understanding, those attributes are il-
lustrated in Figure 4.6. The detectionTime attribute is solely used for performance
evaluation and contains a timestamp generated in JavaScript that contains the number
of milliseconds since January 1st, 1970 00:00:00.

ShowNodeDetails Event

After a NodeWallDisplayPressed message was triggered by the wall screen instance
of the Angular client application, the Unity application starts to determine the Vive
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Figure 4.6: Annotated screenshot of the Angula rapplication showing the interpretation
of offsets as the are sent in the NodeWallDisplayPressed message.

tracker that is closest to the selected node on the wall screen with the data from the
received message. After this process has finished, the Angular client instance of the
tablet that is allocated to this tracker has to be notified to show the Details-on-Demand
visualization on the tablet screen. This is performed with the ShowNodeDetails message
that is sent by the Unity application to the Angular client instance that was determined
as the closest. The message contains two additional attributes. While detectionTime
is again only used for performance evaluation, the nodeID attribute is required to tell
the tablet instance for which node the details-on-demand section should be opened.

1 {
2 "fromDeviceID":"WallDisplay",
3 "toDeviceID":"Tracker1",
4 "messageID":"d5f9d615-58f6-43e0-88ea-5cfc7123459b",
5 "messageType":4,
6 "showNodeDetailsAttributes":
7 {
8 "nodeID":"voe av",
9 "detectionTime":"1598980001928"

10 },
11 }

RequestTabletContent Event

The RequestTabletContent message is generated by the Unity application as soon as
the Tablet-To-Wall-Screen gesture was detected. The message is sent to the Angular
application instance that is coupled with the Vive tracker for which the gesture was ini-
tiated. As only the Unity application has a direct connection to the tracking hardware,
this message is required to notify the corresponding Angular client instance that its cur-
rent state of the graph or node details visualization has to be captured and shared on
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the wall screen. As illustrated in the sample message below, this message has three addi-
tional attributes. The attributes relativePosOnScreenX and relativePosOnScreenY
define the approximate location on the wall screen on which the tablet content should be
opened. As the Unity application is not aware of the screen resolution that is currently
configured on the wall screen, this position is defined by relative values between 0 and 1
that refer to the physical screen surface. For instance, the value 0.5 for both attributes
would represent the exact physical middle of the wall screen. These relative positions are
not needed on the tablet instance to generate content for the wall screen, as the content
is later opened on the wall screen instance of the Angular client application. However,
these attributes are passed through in the message as they otherwise would have to
be stored temporarily in the Unity application until they could be added to the cor-
rect incoming message that is transferring the actual tablet content. The detectedTime
attribute is again only used for performance evaluation.

1 {
2 "fromDeviceID":"socket",
3 "toDeviceID":"Tracker1",
4 "messageID":"39686055-4205-4d5a-8559-1c309d6cedba",
5 "messageType":5,
6 "requestTabletContentAttributes":
7 {
8 "relativePosOnScreenX":0.475000024,
9 "relativePosOnScreenY":0.398141265,

10 "detectedTime":1598980177864
11 }
12 }

SendTabletContent Event

After a tablet client instance was notified to capture its contents for displaying them
on the wall screen, it generates a SendTabletContent message that is sent back to the
socket application as an answer to this request. This message is in turn forwarded to the
wall screen instance of the Angular client so that the current state of the visualization
on the tablet can be shown on the wall screen. This requires several additional attributes
in the message. The current state of the tablet visualization before transfer is captured
as an image and encoded in a data url 3 so that the image data can be embedded as a
string in the dataUrl attribute within the JSON structure of the SendTabletContent
message. The data url in the sample message below has been shortened for better
readability. The relative X- and Y-position on the wall screen where the tablet content
should be opened as well as the detection time of the gesture were originally created in
the RequestTabletContent message and are forwarded with this message to the wall
screen instance of the Angular client as they are needed there to open the tablet content
at the desired position:

1 {
2 "fromDeviceID":"Tracker1",
3 "toDeviceID":"WallDisplay",
4 "messageID":"a5925c7b-0d9e-463d-a1f2-816a5f944dea",
5 "messageType":6,

3https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
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6 "showTabletContentAttributes":
7 {"dataUrl":"data:image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD...",
8 requestTabletContentAttributes:
9 {

10 relativePosOnScreenX: 0.7,
11 relativePosOnScreenY: 0.5,
12 detectedTime: 1598980177864
13 }
14 }
15 }

4.3.4 Communication Flow
The following two subsections describe in detail how the different message types de-
scribed in the previous chapter are orchestrated between all involved software com-
ponents for the two implemented spatially-aware interactions Details-on-Demand and
Tablet-to-Wall-Screen.

Details-on-Demand

The entry point for the Details-on-Demand interaction is a user selecting a node on
the wall screen instance of the Angular client by touch interaction as illustrated in
Figure 4.7 [1]. This event causes the wall screen instance to collect all necessary data
about the selected node and its position on the wall screen so that subsequently the
NodeWallDisplayPressed message can be composed and sent to the server socket that
is embedded in the Unity application (Figure 4.7 [2] and [3]). After the retrieval of
this message, the server socket invokes an event which contains as event arguments the
attributes of the processed NodeWallDisplayPressed message (Figure 4.7 [4] and [5]).
The InteractionsManager script attached to the same-named game object in the Unity
application subscribes to this event and sets two instance variables to capture that a
new NodeWallDisplayPressed message was just received:

1 public void NodeWallDisplayPressed(object sender, NodeWallDisplayPressedEventArgs e)
2 {
3 NodeWallDisplayPressedReceived = true;
4 nodePressedArgs = e.pressedNodeMessage.NodeWallDisplayPressedAttributes;
5 }

These variables are used in the update() method of the script that is executed in
each frame to check whether the event was received and therefore the closest tracker
to the screen location has to be determined. If this is the case, the closest tracker
that is registered with a web socket connection is identified (Figure 4.7 [6]). For this
tracker connection, a ShowNodeDetails message is prepared by the Unity application
(Figure 4.7 [7]) which is subsequently sent to the corresponding Angular client instance
by the server socket (Figure 4.7 [8]). In its message handler for incoming messages in
the client socket connection (Figure 4.7 [9]), the Angular client instance of the tablet
device finally switches to the Details-On-Demand view (Figure 4.7 [10]).
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Figure 4.7: Sequence diagram for the Details-on-Demand interaction showing the com-
munication flow between all involved software components.

Tablet-to-Wall-Screen

For the Tablet-to-Wall-Screen interaction, the entry point is represented by the user
tilting the tablet display towards the wall screen (Figure 4.8 [1]). After this gesture is
detected by the Unity application, the data for the RequestTabletContent message
are prepared which includes the tracker identification so that it is later known from
which Angular client instance the current state of the visualization has to be requested
(Figure 4.8 [2]). The transmission of the message is initiated by the Unity application
(Figure 4.8 [3]) which is subsequently dispatched by the server socket to the corre-
sponding Angular client instance of the tilted tablet (Figure 4.8 [4]). In the incoming
message handler of the tablet’s Angular client instance, the state of the current graph or
Details-on-Demand visualization is captured and converted into a data url (Figure 4.8
[5]), which is sent back to the server socket in the SendTabletContent message as a
response to the RequestTabletContent message (Figure 4.8 [6]). This message is for-
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Figure 4.8: Sequence diagram for the Tablet-to-Wall-Screen interaction showing the
communication flow between all involved software components.

warded to the wall screen socket instance of the Angular client by the server socket
(Figure 4.8 [7]). After receiving this message, the wall screen instance of the Angular
client can emit an internal event to show the content of the incoming message in the
graph visualization area of the screen in a new overlay window (Figure 4.8 [8]).

4.4 Unity Interaction Implementation Details
The following two subsections cover the implementation details of the Unity application
that were required to cover the detection of spatial events and calculation of spatial
relationships for the two demonstrator interactions Details-on-Demand and Tablet-to-
Wall-Screen.
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4.4.1 Details-on-Demand
As indicated in the previous section, the Unity application has to determine the spatially
closest tracker to the selected node on the wall screen. This process is started in the
update() method of the InteractionsManager script attached to the same-named
game object after the NodeWallDisplayPressedReceived event was received from the
server socket. In a first step, the real-world position of the selected node on the wall
display is calculated from the data in the received NodeWallDisplayPressedReceived
message (line 1) and a test cube for debugging purposes is placed on the calculated node
position on the ground plane representing the wall screen (line 2):

1 var realWorldPositionNodePress = NodeWallDisplayPressedUtilities.
getWorldCoordinatesfromBrowserCoordinates(wallDisplay, nodePressedArgs);

2 nodePressTestCube.transform.position = realWorldPositionNodePress;

This node position calculation is moved to a method in the utility class
NodeWallDisplayPressedUtilities (see program 4.2) and returns a Vector3 object
containing the X-, Y- and Z-coordinate of the calculated centroid of the selected node
on the wall display. In a first step, the real world position and dimensions of the ground
plane representing the wall screen in the Unity scene are calculated (see lines three to
eight in program 4.2). As ground planes are by default 10 × 10 meters in Unity and the
plane has to flipped to be oriented as a wall screen in 3D space, this requires scaling
with the local scale of the game object representing the wall screen and calculating
the height of the wall display with the Z-dimension of the ground plane instead of the
Y-dimensions. Next, the relative real-world X- and Y-positions of the selected node are
calculated with the absolute position and screen resolution values for each axis from the
NodeWallDisplayPressed message (see lines 10 and 11 in program 4.2). The absolute
X- and Y-position of the selected node are calculated in the Angular client beforehand by
adding offsets for sidebar and application header as described in subsection 4.3.3 during
the composition of the NodeWallDisplayPressed message. These coordinates are based
on reported pixel values in the browser and have to be mapped to a physical real-world
position on the screen so that the closest tracker can be determined correctly. This is
achieved by first multiplying the physical width and height of the wall screen with the
corresponding ratio for the relative position on the x- and y-axis respectively (see lines
14 and 15 in program 4.2). This gives Unity’s X- and Y-coordinates for the selected
node relative to the wall screen, from which the global position in Unity’s coordinate
system can be derived by subtracting them from the largest Z- and Y-coordinate of
the ground plane representing the wall screen. (see lines 17 and 18 in program 4.2).
The subtraction is necessary, as the axes of the pixel-based browser coordinates and the
Unity coordinate system have opposite directions. For instance, the origin of the Y-axis
in the browser is at the top of the page, while in Unity the origin of the Y-axis is at
the ground and increases with the height of tracked objects. Furthermore, the browser
X-coordinate has again to be compared with the Z-coordinate of the ground plane in
Unity because it is flipped. The final calculated position of the selected node is returned
as Vector3 object in which the X-coordinate remains unchanged, as it represents the
real-world Z-coordinate because of the flipping and it is assumed that the selected node
is not located somewhere in 3D space, but directly on the wall screen.

The calculated position of the selected node is subsequently used in the
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Program 4.2: getWorldCoordinatesfromBrowserCoordinates() method in the
NodeWallDisplayPressedUtilities utility class to calculate the real world position if
the selected node on the wall display from the pixel coordinates.

1 public static Vector3 getWorldCoordinatesfromBrowserCoordinates(GameObject
wallDisplay, MessageAttributesNodeWallDisplayPressed nodePressedArgs)

2 {
3 Vector3 displayGlobalPosition = wallDisplay.transform.position;
4
5 //Planes in unity always 10x10 meters by default
6 var widthWallDisplay = 10 * wallDisplay.transform.localScale.x;
7 //z is height because plane is flipped in browser
8 var heightWallDisplay = 10 * wallDisplay.transform.localScale.z;
9

10 var relativePosXinBrowser = nodePressedArgs.xAbsolute /
nodePressedArgs.screenResolutionX;

11 var relativePosYinBrowser = nodePressedArgs.yAbsolute /
nodePressedArgs.screenResolutionY;

12
13 //offset to be subtracted from left /upper edge of wall screen to match correct sceen

position
14 var physicalXposRelativeOnWallDisplay = widthWallDisplay *

relativePosXinBrowser;
15 var physicalYposRelativeOnWallDisplay = heightWallDisplay *

relativePosYinBrowser;
16
17 var xPosOnWallDisplay = displayGlobalPosition.z + widthWallDisplay / 2 -

physicalXposRelativeOnWallDisplay;
18 var yPosOnWallDisplay = displayGlobalPosition.y + heightWallDisplay / 2 -

physicalYposRelativeOnWallDisplay;
19
20 /∗because of the flipped canvas x pixel coordinate of screen is z coordinate in unity

editor − x coordinate of Vector remains unchanged as it represents a z coordinate which
is not relevant for a 2D canvas ∗/

21 return new Vector3(displayGlobalPosition.x, yPosOnWallDisplay, xPosOnWallDisplay
);

22 }

InteractionsManager script to compare it with the positions of all Vive trackers that
are currently registered in the Unity application and that have an active web socket
connection that was registered via the Register message. The tracker with the shortest
distance in 3D space to the Vector3 object representing the selected node is determined
as the recipient of a ShowNodeDetails message so that the details of this node can be dis-
played on the mapped tablet device. Only trackers that are located within the personal
interaction zone with the wall screen as defined by Vogel and Balakrishnan (2004) are
considered as it is unlikely that the node was touched by a user who is located more than
an arm’s length away from the wall screen. If no tracker is registered in the web socket
application, no message will be sent. The getClosestTrackerToWallScreenPosition
method in the NodeWallDisplayPressedUtilities utility class of the Unity applica-
tion implements this logic as can be seen in program 4.3. The verification whether
a single tracker is located within the personal interaction zone is implemented in the
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Program 4.3: getClosestTrackerToWallScreenPosition() method in the
NodeWallDisplayPressedUtilities utility class to determine the closest, registered
tracker to the physical position of the node selected on the wall screen.

1 public static GameObject getClosestTrackerToWallScreenPosition(
2 Vector3 wallScreenPos, Dictionary<GameObject, bool> trackers)
3 {
4 GameObject nearestTracker = null;
5 List<KeyValuePair<GameObject, float>> trackersByDistance =
6 new List<KeyValuePair<GameObject, float>>();
7
8 foreach (var tracker in trackers)
9 {

10 if (!tracker.Value)
11 {
12 Debug.Log("[getClosestTrackerToWallScreenPosition] Tracker " +
13 tracker.Key.name + " not connected...");
14 }
15 else
16 {
17 if (TrackerGestures.TrackerInPersonalInteractionZone(
18 tracker.Key.transform.position))
19 {
20 var distance = Vector3.Distance(
21 wallScreenPos, tracker.Key.transform.position);
22 trackersByDistance.Add(new KeyValuePair<GameObject, float>
23 (tracker.Key, distance));
24 }
25 }
26 }
27 if (trackersByDistance.Count > 0)
28 {
29 trackersByDistance.Sort((pair1, pair2) => pair1.Value.CompareTo(pair2.Value)

);
30 var closestTracker = trackersByDistance.First();
31 nearestTracker = closestTracker.Key;
32 }
33 else
34 {
35 Debug.Log("[getClosestTrackerToWallScreenPosition] no valid tracker found...");
36 }
37 return nearestTracker;
38 }

TrackerInPersonalInteractionZone() method which is called in line 17 of program
4.3 and checks the tracker’s global position against configurable treshholds in 3D space
depending on where the WallScreen game object is located in the Unity scene and re-
turns a boolean value of true if the tracker is within the personal interaction zone. After
the method iterated through all connected trackers to calculate the distance between
selected node and tracker, the collection of possible trackers is sorted by this distance
(line 29) and the tracker game object with the shortest distance is returned (lines 31
and 37).
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Program 4.4: checkForTabletPointedTowardsScreenGesture() method in the
PointTabletToScreenGesture class which checks all conditions that have to be met
for the Tablet-to-Wall-Screen gesture and triggers it if necessary.

1 public bool checkForTabletPointedTowardsScreenGesture(Vector3 currPosition, Vector3
currRotation, DateTime possibleGestureDetectionTime, PhysicalConfig.
TabletTrackerMountPositions trackerPostion)

2 {
3 bool gestureDetected = false;
4 if (doCheckStillCoolingDown())
5 {
6 return gestureDetected;
7 }
8 doCheckHoldingFacingScreen(currPosition, currRotation, trackerPostion);
9 doCheckTrackerNearToWallDisplay(currPosition, trackerPostion);

10 doCheckTrackerHoldTowardsWallDisplay(currPosition, currRotation, trackerPostion)
;

11 if (HoldingTowardsScreen && HoldingFacingScreen && InFrontScreen)
12 {
13 gestureDetected = true;
14 triggerGesture(possibleGestureDetectionTime);
15 }
16 return gestureDetected;
17 }

4.4.2 Tablet-to-Wall-Screen
To each Tracker prefab in the ViveCameraRig game object in the Unity application a
TrackerHandler script is attached. During startup, an instance of a
PointTabletToScreenGesture class is created, which plays the central role in detecting
the Tablet-to-Wall-Screen gesture. This class implements a method (see program 4.4),
which is called in each frame by calling it in the update() method of the script attached
to the game object and that orchestrates the different conditions that have to be met
to trigger the gesture. As input parameters, the current position and orientation of the
tracker as Vector3 objects as well as the currently configured tracker mount position
which is an enumeration are required. The possibleGestureDetectionTime attribute
is solely used for collecting performance metrics.

The detection of the gesture consists of a cascade of three conditions that have to be
met and are checked in lines eight to ten in program 4.4. First, it is verified whether the
tablet is oriented towards the wall screen, i.e. if the user is forming a f-formation with
the wall screen and the tablet is part of the o-space of this formation. This condition
is checked in the doCheckHoldingFacingScreen() method and returns true if the
condition is met. However, this method only checks the orientation of the tracker towards
the wall screen. As f-formations only apply when entities are located within a limited
spatial area, the distance between tracker and wall screen has also to be checked. This
verification was moved to a separate method doCheckTrackerNearToWallDisplay(),
as the designed solution restricts the detection of f-formations not only to encounters
within a 1.7 meters boundary as defined by Dunbar et al. (1995). Instead, trackers
that are located in the subtle or implicit interaction zone as defined by Vogel and
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Balakrishnan (2004) are also interpreted as being part of a f-formation with the wall
screen if they are oriented to it. After these two conditions are met, the gesture is finally
triggered as soon as the tablet’s screen was tilted towards the wall screen. This change
in tracker orientation is verified by the doCheckTrackerHoldTowardsWallDisplay()
method, which returns true if the tablet display is pointing towards the wall screen
with the updated orientation data. All three methods verifying these conditions utilize
methods from a TrackerGestures utility class that contains methods for detecting
different spatial events based on the two concepts of f-formations and interaction zones
that will also be used in future work when a re-usable spatially-aware interactions API is
built. In these methods, the actual comparisons between tracker orientation and position
for all relevant degrees of freedom with the configured thresholds is performed.

The three conditions for the interaction cannot all be present at the same time, as
the the first condition checking that the tracker is within o-space with the wall display
and the third condition checking whether the tablet display was tilted towards the wall
screen have conflicting tracker orientation thresholds. This adds a time constraint on
the detection of the Tablet-to-Wall-Screen gesture. Program 4.5 shows an extract from
the doCheckHoldingFacingScreen method used to check whether the tracker forms an
f-formation with wall screen to illustrate the required logic. When one of the first two
conditions - i.e. tablet in o-space with wall screen and at least within implicit interaction
zone - is met, the information that this event occurred is stored in an instance variable
of the PointTabletToScreenGesture class and a configurable timer resetting this event
after a specified time is set (see lines 22 and 25 in program 4.5). If the condition is
met again after the timer has elapsed, for instance because the tablet is still oriented
towards the wall screen this process repeats. If the condition is not met in the current
frame, but was met in a previous frame before the timer elapsed, the condition is still
considered to be true and the timer value is decremented (see line 22 in program 4.5).
If the condition is not present anymore in the current frame and the timer elapsed, the
condition is not considered to be true anymore.

The triggering of the gesture after all three conditions evaluated to true within
the timer limits as explained above is implemented in the triggerGesture() method
of the PointTabletToScreenGesture class which is called in line 14 of program 4.4.
This method composes the RequestTabletContent message that is subsequently dis-
patched by the server socket to the Angular client instance that is coupled with the tilted
tracker. Additionally to the tracker identification, the last collision point between the
WallScreen game object and and the raycast originating from the Tracker game object
is added to the message so that later the tablet content can be opened approximately
in the wall screen area to which the tablet surface was pointed. This collision point that
is a property in the TrackerHandler script attached to the corresponding tracker game
object is continuously updated as soon as the tracker’s raycast hits the WallScreen
game object. This is implemented in a GetScreenPosition script that is attached to
the WallScreen game object that uses the two Unity event functions OnTrigerEnter
and OnTriggerStay that are executed when another game object such as the tracker’s
raycast collides the first time or keeps colliding respectively. The methods determine the
TrackerHandler object belonging to the rayscast hitting the wall screen and update
the last collision point property there as the following code extract from the script with
the OnTriggerEnter() and OnTriggerStay() will show.
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Program 4.5: doCheckHoldingFacingScreen() method in the
PointTabletToScreenGesture checking the condition whether the tablet is ori-
ented towards the wall screen and maintaning this information for following frames in
the Unity application. Omitted code parts indicated by ...

1 public class PointTabletToScreenGesture
2 {
3 private bool holdingFacingScreen;
4 private const float holdingFacingWallDisplayTimeout = 3f;
5 ...
6 public bool HoldingFacingScreen
7 {
8 get => holdingFacingScreen;
9 private set => holdingFacingScreen = value;

10 }
11 public bool HoldingFacingScreen
12 {
13 get => holdingFacingScreen;
14 private set => holdingFacingScreen = value;
15 }
16 ...
17 private void doCheckHoldingFacingScreen(Vector3 currPosition, Vector3

currRotation, PhysicalConfig.TabletTrackerMountPositions trackerPostion)
18 {
19 bool gesturePresent = TrackerGestures.TrackerInFformationWithWallScreen(

currPosition, currRotation, trackerPostion);
20 if (gesturePresent)
21 {
22 HoldingFacingScreenTimeOut = HoldingFacingWallDisplayTimeout;
23 if (!HoldingFacingScreen)
24 {
25 HoldingFacingScreen = true;
26 }
27 }
28 else
29 {
30 if (HoldingFacingScreen)
31 {
32 HoldingFacingScreenTimeOut -= Time.deltaTime;
33 if (HoldingFacingScreenTimeOut < 0)
34 {
35 HoldingFacingScreen = false;
36 HoldingFacingScreenTimeOut = HoldingFacingWallDisplayTimeout;
37 }
38 }
39 }
40
41 }
42 ...
43 }
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1 void OnTriggerEnter(Collider other)
2 {
3 ViveRoleSetter setter = other.gameObject.transform.parent.parent.gameObject.

GetComponent<ViveRoleSetter>();
4 Debug.Log("Canvas collided with Tracker" + setter.viveRole.roleValue);
5 Vector3 pointOnWallScreen = this.gameObject.GetComponent<MeshCollider>().

ClosestPoint(other.transform.position);
6 GameObject.Find("Tracker" + setter.viveRole.roleValue).GetComponent<

TrackerHandler>()
7 .lastCollisionPointWithWallScreen = pointOnWallScreen;
8 }
9

10 void OnTriggerStay(Collider other)
11 {
12 ViveRoleSetter setter = other.gameObject.transform.parent.parent.gameObject.

GetComponent<ViveRoleSetter>();
13 Debug.Log("[OnTriggerStay ]Canvas collided with Tracker" + setter.viveRole.

roleValue);
14 Vector3 pointOnWallScreen = this.gameObject.GetComponent<MeshCollider>().

ClosestPoint(other.transform.position);
15 GameObject.Find("Tracker" + setter.viveRole.roleValue).GetComponent<

TrackerHandler>()
16 .lastCollisionPointWithWallScreen = pointOnWallScreen;
17 }

After the RequestTabletContent message was composed, the triggerGesture method
resets all instance variables that hold data about the cascade of conditions such as
the boolean variables specifying which of the three conditions are met and the timers
for resetting those conditions automatically. This is required to repeat the gesture
multiple times. Addtionally, a cooldown phase which starts a configurable countdown
is initiated. The checkForTabletPointedTowardsScreenGesture() method in the
PointTabletToScreenGesture class checks at the beginning if this countdown is in-
active or has already elapsed. Only if this is the case, it continues with the gesture
detection in the current frame. Without this short cooldown phase, the gesture would
be fired multiple times although the gesture was only performed once, as the three con-
ditions for the gesture would evaluate to true in multiple frames until the tablet takes
another orientation after performing the gesture.

4.5 Integration into Supply Chain Network Prototype
To adapt content on either the wall screen or a mobile device depending on the discussed
spatial events, several adaptions in the Angular-based supply chain network prototype
were necessary. These changes include a message gateway for communication with the
tracking server socket, a facility in the user interface to couple physical trackers with
the instance of the Angular client, as well as the required additional views in the client
for the Details-On-Demand and Tablet-To-Wall-Screen interactions. These adaptions
are outlined in detail in the following subsections.
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4.5.1 Tracking Service
To centralise the communication with the web socket server embedded in the Unity ap-
plication so that these implementations can be re-used by multiple Angular components,
a new Angular service named TrackingService has been added to the Angular applica-
tion. By separating functions with a well-defined, specific purpose from the Angular com-
ponents’ view-related functionality in an independent service, it is expected to increase
modularity and reusability 4. This service is located in the src/app/service/tracking
folder of the Angular client source code and is referenced as a singleton instance variable
in the main component of the application.

After the tracking service was initialized in the main component with its constructor
that sets basic connection parameters like server socket ip address and TCP port, the
InitConnection() method of the tracking service is executed that subscribes to the
web socket server in the Unity application and that registers two event handler methods
which are either executed after a successful web socket connection handshake(see line
three) and after an incoming message was received by the Angular client (see line4):

1 public InitConnection(): void {
2 this.socket = new WebSocket(`ws://${this.serverSocketIP}:${

this.serverSocketPort}/trackinggateway`);
3 this.socket.addEventListener('open', () => { this.Handshake(); });
4 this.socket.addEventListener('message',() => {this.OnMessageReceived(event); });
5 }

While in the tracking service the Handshake() method is only relevant for debugging,
the OnMessageReceived() method (see program 4.6) is important for distributing
internal events in the Angular application to adapt views as necessary after a message
was received by the server socket embedded in the Unity application.

The event that is fired in line six of program 4.6 causes the main component to switch
the displayed component in the main view from the graph visualization component
to the Details-on-Demand component, which is further described in subsection 4.5.3.
Similarly for the Tablet-to-Wall-Screen interaction, the event in line 13 notifies the graph
visualization component of the wall screen instance to show the incoming message as
overlay window over the graph component which is further described in subsection 4.5.4.

Unlike these first two events, the event that is fired in line nine of program 4.6 does
not result in an immediate change in the user interface of the Angular client. This event
that is fired after a RequestTabletContent message was received initiates capturing the
current state of the visualization area of the receiving Angular client in the background
and sending a SendTabletContent message including this state as a response back to
the server socket. The capturing of content is achieved by converting the current main
content of the tablet device which can be either a supply chain graph or a detail-view
of a node selected on the wall screen to an image by using the dom2image5 library (see
line three in the following extract from the event handler). This library iterates over all
child elements of the selected HTML element and converts it into a data url allowing it
to transfer the captured image in the JSON structure of the response message without
the need to handle binary image data.

4https://angular.io/guide/architecture-services
5https://github.com/tsayen/dom-to-image
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Program 4.6: OnMessageReceived() method in the TrackingService dispatching in-
coming messages from the Unity server socket withn the client’s components as necessary.

1 public OnMessageReceived(event): void {
2 try {
3 const msg: TrackingMessage = JSON.parse(event.data);
4 if (msg.messageType === TrackingMessageTypes.ShowNodeDetails) {
5 console.log('[tracking-service] have to show node-details...');
6 this.showNodeDetails.next(msg);
7 } else if (msg.messageType === TrackingMessageTypes.RequestTabletContent) {
8 console.log('[tracking-service] send my visualization to wall display');
9 this.transferVisualizationToWallDisplay.next(msg);

10 } else if (msg.messageType === TrackingMessageTypes.SendTabletContent &&
11 this.deviceID === 'WallDisplay') {
12 console.log('[tracking-service]: received new content for wall screen');
13 this.displayContentOnWallDisplay.next(msg);
14 }
15 } catch (e) {
16 console.log('[tracking-service] no JSON data');
17 }
18 }

1 this.trackingService.transferVisualizationToWallDisplay.subscribe((data) => {
2 const node = document.getElementById('main-content' );
3 domtoimage.toJpeg(node, { quality: 0.9, bgcolor: '#f7f7f7'}).then((imgData) =>

{
4 const msg = { ... };
5 this.trackingService.SendMessageToSocket(msg);
6 });
7 });

The functionality of the data service is completed by the implementation of a mes-
sage queue that stores outgoing messages to the server socket in a stack in the order
in which they were created. After successful transmission of the message to the server
socket, the message is removed from the stack. This allows buffering of messages for
the case that the web socket has currently no connection. This allows automatic re-
transmission of outgoing messages after reconnect.

4.5.2 Tracker-Controller Component
The tracker-controller component was added to the prototype to manage the pair-
ing between Angular client instances and physical trackers that are registered in the
Unity application and can be found in the app/component/tracker-controller folder
of the Angular client source code. The component of which a screenshot of the final im-
plementation is provided in Figure 4.9 allows it to allocate the currently opened Angular
client instance to either the wall screen or one of the Vive trackers. This configuration
is neccessary to correctly address messages dispatched by the server socket that were
previously caused by spatial events as described in subsection 4.3.2. As soon as the
selection in the component changes, a Deregister message is sent to the server socket
removing the allocation between server socket and previous selection if there was one
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Figure 4.9: Screenshot of the final tracker controller component for managing the allo-
cation between Angular client instance and physical tracker.

present. This message then follows a Register message for the new selection. For the
case that this Angular client instance is allocated to a Vive tracker, the identification of
the tracker has to be selected additionally to the device type from a dropdown selection
(see subsection 4.3.2). This identification matches the names of the tracker game objects
in the Unity application so that they can be mapped. The selection in this component
is stored in the local storage of the browser so that it is persitently available after
re-opening the browser or refreshing the page. The device identfication provided with
this logic also utilized in the socket server application, as messages are not broadcasted
by the socket server and only sent to the device for which the message is relevant as
specified in the toDevice attribute.

4.5.3 Details-On-Demand Component
As briefly outlined in subsection 4.5.1, the main component of the client switches from
the graph visualization view that is by default active to the details-on-demand view
when a ShowNodeDetails message was dispatched to this client by the server socket.
After fetching the necessary data in the event handler, the main component sets an
instance variable named showingExtendedNodeDetails that informs the view of the
main component to replace the graph visualization component (line 6 in the following
HTML code) with the details-on-demand component (line 1):

1 <app-details-on-demand *ngIf="showingExtendedNodeDetails"
2 [node]="nodeDetailsOnDemand"
3 [currentEgoNode]="egoNode"
4 (hideDetailsOnDemand)="hideDetailsOnDemand(\$event)">
5 </app-details-on-demand>
6 <app-graph id="graph-container"
7 *ngIf="!isLoadingNetwork && !showingExtendedNodeDetails; else loadingBlock"
8 [network]="network"
9 [filter]="filterValue"

10 (nodeClicked)="onNodeClicked(\$event)"
11 (linkClicked)="onLinkClicked(\$event)">
12 </app-graph>

To utilize as much screen space as possible which is rather limited on tablet screens,
this switch between components also temporarily hides the sidebar which is part of the
app-graph component so that for the Details-On-Demand interaction only the applica-
tion header and the details-on-demand component are visible.

The Details-On-Demand view that is then shown on the tablet device is illustrated
in Figure 4.10 is divided into two main parts. The upper, smaller part shows additionally
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Figure 4.10: Screenshot of Details-On-Demand view on the tablet device after a node
was selected on the wall screen. In the top part, major attributes of the node including
industries as chip lists are shown. The main part of the view is filled with a sankey diagram
showing the inflows to the selected company on the left and the outflows from the selected
company on the right.

to the company name of the selected node on the wall sreen several key-attributes of
interest that were described in detail in subsection 3.1.2 and subsection 3.1.2 such as
COGS, Capex, total financial in- and outflow, node degree and country of origin of the
selected company. Furthermore, the industries according to the company’s GICS code
are displayed as a chip list on the right.

The major part of screen space is consumed by the sankey diagram that is displayed
below the attributes section. For this visualization, the already existing sankey compo-
nent that is also used when a node in the overlay window after selection is expanded as
described in subsection 3.1.3 could be re-used. The sankey diagram groups the direct
neighbours of the node that was previously selected on the wall screen into suppliers
and customers. While the previously selected node is in the middle of the diagram, the
companies supplying this node are located on the left side and show the inflow to the se-
lected node. The companies that are located at the right on the other hand are supplied
by the selected node and therefore show the outflow. The thickness of all edges is cou-
pled with the value of their COGS attribute as explained in subsection 3.1.2 illustrating
the contribution to the selected node’s COGS for each supplier and the most relevant
customers of the selected node according to the COGS measure. On the top-right of
the Details-On-Demand view, a close-icon to exit the view is located. After this icon
was pressed, the Angular client on the tablet device switches back to the original graph
visualization with all filters and nodes selected as before the view was overwritten with
the Details-On-Demand view.
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Figure 4.11: Screenshot of the supply chain network prototype running on the wall
screen after two Tablet-to-Wall-Screen interactions have been performed. The left overlay
window shows the supply chain graph that was analyzed on the tablet, while the right
overlay window share a Details-on-Demand view that was previously opened on the tablet.

4.5.4 Tablet-Content Component
The Tablet-Content component that opens the current state of the tablet visualization
after detection of the Tablet-to-Wall-Screen gesture looks similar to the already existing
node-details component that is opened as overlay window over the D3 graph after a
node was selected in the network. An example screenshot that shows the state of the
client running on the wall screen after performing the gesture two times with different
visualizations on the tablet can be found in Figure 4.11. As can be seen, the number
of overlay windows created with this interaction is not limited. Multiple overlays with
tablet content can be shared on the wall screen at once, making it easier to compare
different networks. The different overlay windows can be moved by touch interaction as
needed.

The main component of the Angular client subscribes to an event of the tracking
service (see subsection 4.5.1 that is emitted when a new SendTabletContent message is
received by the Angluar client wall screen instance from the server socket. This message
contains the approximate position and content as data url of the overlay window that has
to be added. In the asynchronoulsy running event handler of the main component, the
received message is added to a key-value pair collection of TrackingMessage objects
identified by their message-id that represent tablet contents that have currently to
be displayed (see line 2 in the following event handler). Keeping these messages in
a collection allows to restore overlay windows with tablet content after the site was
refreshed. Next, an internal event in the main component is emitted to refresh data
bindings so that the new number of overlay windows is later shown:

1 this.trackingService.displayContentOnWallDisplay.subscribe((trMessage) => {
2 this.tabletContents.set(trMessage.messageID, trMessage);
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3 this.refreshTabletContentBinding();
4 this._nextTabletContents.next(trMessage);
5 });

This collection of tracking messages is allocated to a div element in the HTML view
of the main component that iterates through this collection and creates a new reference
to the tablet-content component for each message in the stack(see the Angular ngFor
keyword similar to a forEach loop in line one of the HTML extract from the main
component:

1 <div id="tabletContents" *ngFor="let content of boundTabletContents">
2 <div #tabletContentContainer class="app-tablet-content">
3 <ng-container *ngIf="tabletContents!==undefined">
4 <app-loading *ngIf="1==0; else showTabletContent"></app-loading>
5 <ng-template #showTabletContent >
6 <app-tablet-content [content]="content"
7 (hideTabletContent) = "closeTabletContent(event)"></app-tablet-content>
8 </ng-template>
9 </ng-container>

10 </div>
11 </div>

Furthermore, an event handler for closing the overlay window after touching on its
close icon on the top-left is added in line seven. Which SendTabletContent message
containing the data for the window has to be removed from the collection can be deter-
mined with the unique message id.

The correct positioning of overlay windows on the wall screen according to the
relative x- and y-positions in each SendTabletContent message is encapsulated in a
fixOverlayPositionTabletContent() method (see program 4.7). This method is
called for each SendTabletContent message in the collection in the event handler of the
main component after a new SendTabletContent message was received and the data
bindings for possibly already existing overlay windows were refreshed. After determining
the boundaries of the graph visualization component and calculating the current screen
resolution (see lines seven to nine in program 4.7), the approximate x- and y- position
in pixels to which the tablet device was pointed to is calculated by multiplying the
resolution with the relative ratio from tracking message for both axes (see lines eleven
and twelve in program 4.7). These calculated coordinates are then used to position this
overlay window with its center approximately at the location to which the tablet was
pointed towards the wall screen (see lines 15 to 19 in program 4.7).
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Program 4.7: fixOverlayPositionTabletContent() method in the main component
calculating the screen position for sa single overlay window with the attributes from the
given message attributes. Omitted code parts indicated by ...

1 private fixOverlayPositionTabletContent(event: MessageAttributesRequestTabletContent
2 ,containerRef: ElementRef):
3 void {
4 if (!this.mainContentRef || !containerRef) {
5 return;
6 }
7 const mainBounds = this.mainContentRef.nativeElement.getBoundingClientRect();
8 const screenResolutionX = window.screen.width * window.devicePixelRatio;
9 const screenResolutionY = window.screen.height * window.devicePixelRatio;

10 const pointedX = event.relativePosOnScreenX * screenResolutionX;
11 const pointedY = event.relativePosOnScreenY * screenResolutionY;
12 console.log(`[main] fixOverlayPositionTabletContent:
13 tablet pointed approximately towards (x): ${pointedX} (y): ${pointedY}`);
14 const overlaySelection = d3.select(containerRef.nativeElement);
15 overlaySelection
16 .style('top', `${Math.round((pointedY - mainBounds.y) /
17 window.devicePixelRatio) - 200 }px`)
18 .style('left', `${Math.round((pointedX - mainBounds.x)
19 / window.devicePixelRatio) - 200 }px`);
20 }



Chapter 5

Technical Evaluation

5.1 General Methods

5.1.1 Apparatus

Physical Setup Tracking Area

For the technical evaluation of Vive trackers, different mounting positions and proto-
typical interactions, a lab at the University of Applied Sciences Upper Austria campus
Hagenberg was used. This 6 × 5 m room with a 3 m high ceiling was equipped with
strip lights at the ceiling and could be protected against exposure to natural lighting
with opaque curtains at the windows. The floor of the room was checked to be level to
gravity with a spirit level.

All measurements were taken during daytime with closed curtains and striplights
turned off. The dimensions of the room as well was all ground truth measurements were
checked with a Bosch GLM 120 C laser range finder1 providing a measurement accu-
racy of ±1.5mm for distance and ±0.2° for orientation. Room dimensions remeasured
with this range finder were 5.968 × 4.965 m. The calculated center point of the room
can therefore described with the x/z-coordinates (2.984, 2.4825) m. This centroid was
determined by placing a tripod with a diameter of 2.5 cm in the center of the room
until the distance between the wall and the tripod was measured with 2.9715 and 2.47
m respectively which is the x/z-coordinate of the centroid subtracted by the half the
diameter of the tripod. The measured placement error during this procedure did not
exceed 1mm. This point on the floor was marked by drawing a reticle on a tape that
was applied to the floor beforehand.

This point was used as orientation during the setup of the play area in SteamVR, in
which the user is asked in the second step to put both controllers onto the floor in the
middle of the play area. After the calibration of the play area in which it was ensured
to keep its boundaries level to the walls of the room, a Vive tracker was put on the
floor at this location and moved until x/z-coordinates of the tracker were reported with
0.000 m each. The reticle was then adjusted to this point. Outgoing from this center
point, a 4 × 3 m Cartesian grid was applied with tape on the floor with its positive
z-axis oriented towards the location of the wall screen. The grid lines were spaced by 1

1https://www.bosch-professional.com/de/de/products/glm-120-c-0601072F00

95



5. Technical Evaluation 96

Figure 5.1: Left: schematic drawing of the Cartesian grid utilized for all measurements
and its spatial relations to wall screen, Vive HMD and lighthouses. Right: picture of the
actual setting in the lab

m on the x-axis and 0.5 m on the z-axis making a total of 35 grid points. This ensured
a finer granularity along the z-axis which is especially relevant for Vogel’s interaction
zones and the Details-On-Demand interaction. To minimize and correct error during
the placement of grid points, a line laser and large ruler with a length of 1m were used
to ensure that the applied grid points are parallel to each other. The correct distance
between each grid point and its neighbouring grid points was afterwards checked by
putting the laser range finder on a tripod on each point, putting another tripod on each
neighbouring point an measuring the distance to it with the laser range finder. After
the final adjustments, the maximum positioning error of grid points remained below
0.5 cm. A schematic drawing of the result including the location of the wall screen and
lighthouses can bee seen in figure Figure 5.1.

The Surface wall screen was moved at the end of the room and aligned with the wall
so that the positive z-axis of the play area was directed towards the wall screen. With
its monitor stand placed exactly at the middle of the wall, The center of the screen area
was aligned with the z-axis of the play area, so that at x = 0 the z-axis pointed towards
the middle of the screen. The three grid points closest to the wall screen were located
directly in front of the wall screen at (-1, 1.5), (0, 1.5) and (1, 1.5) and had a distance
of approximately 40cm to the wall screen.

During all tests, the lighthouses were mounted on rails at the ceiling that were
specifically installed for that purpose at a height of 2.55 m. They directly faced each
other at an angle of 45 ° relative to the Cartesian grid at a distance of 5 m to each
other and faced 38° downwards to the floor, so that the lighthouse distance and angles
were within the recommended thresholds from HTC. Their x/z-location in relation
to the Cartesian grid were during all tests approximately (-2.30, 1.7) and (2.30, -1.7)
respectively as indicated by the boxes in figure Figure 5.1.

To avoid the problem of switching bias discovered by Niehorster et al. (2017), the
Vive headset was placed on a chair in front of the wall screen so that it was visible to
both lighthouse base stations at all times during the tests.
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Figure 5.2: Photographs showing the different setups mounted on the tripod for the
measurements during technical evaluation: tracker only (left), tablet with tracker mounted
at the top position (middle) and tablet with tracker mounted at the backside of the tablet
(right)

Evaluated Tracker Mounting Positions

As already indicated in subsection 4.1.2, two different tracker mounting positions on the
tablet were tested during implementation. These mounting positions were also examined
during technical evaluation by using a tripod mount: at the backside and on the top
edge of the tablet. Most experiments during the technical evaluation were conducted
with both mounting positions so that in the end the best-suited for the given scenario
could be determined. Additionally, some experiments were also conducted with only the
Vive tracker as reference for the impact of the tablet device and the tracker’s mounting
position.

For the experiments where the tracker should remain static, all of these three dif-
ferent setups were mounted on a tripod whose height was adjusted individually for
each experiment to put it on a height that could realistically represent a standing user
holding the tablet with the tracker. While for the setup with only the Vive tracker the
tracker was oriented level to the ground on the tripod, the two setups with the tablet
were mounted on the tripod with the tablet having an orientation of 38° on the pitch
axis imitating that the tablet is currently held by a user. All three different setups on
the tripod can be seen in Figure 5.2.

While for the tracker-only configuration the x-/z position of the tracker can be
directly derived from the tripod’s center location when it is put on a specific grid point,
this is not possible for the setups with the tablet as the mounting construction causes
an offset outgoing from the top-middle of the tripod which is put on the grid point.
Assuming that the pitch-orientation of the tracker is aligned with the positive z-axis of
the grid at an angle of 38° as in the tests, this offset is approximately +12 cm on the
z-axis and +11 cm on the y-axis for the top mounting position and +11.7 cm on the
z-axis and +6.7 cm on the y-axis for the backside mounting position respectively.
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Data Collection

For all trials requiring the collection of data from Vive trackers such as positional
and orientational data or data about the availability of tracking, a Unity script was
implemented that recorded these data for each frame in the update() method in a
delimiter-separated text file. This included the global coordinates of the Vive tracker
as x-/y-/z-positions as well as the pitch-, yaw- and roll-angles of the tracker as Euler
angles. The information whether tracking was available or lost in the current frame was
stored in a binary variable which was set to 1 when tracking was available and 0 if not.

The script includes an event handler that is executed when the trigger of a Vive
controller is pressed or released. Within this event handler, a new measurement is started
as soon as the trigger of the controller is pulled. Furthermore, the script contains a
configurable timer that allows to specify for how many seconds data should be collected
after the trigger of the controller was pressed. The Unity data collection script can also
be found in the source code repository linked in section B.3.

In all trials that required to move the tracker on a tripod to different grid locations
to start measurements from there, the tripod was left there static for at least 30 seconds
before measurements were started to ensure that no vibrations were present. The correct
positioning of the tripod was again checked with the laser range finder on an additional
tripod from two neighbouring grid points. Furthermore, the lighthouses were powered
off and powered on again before a new experiment was started, as during pre-testing of
the technical evaluation it was observed that a drift in positional accuracy by several
centimeters especially in height can occur when the lighthouses were already operated
continuously over a long period of time.

5.1.2 Data Analysis
All of the following metrics and visualizations generated from the collected data during
evaluation were produced in Matlab. A reference to the collected raw data and the
Matlab scripts produced during evaluation is provided in Appendix C.

Positional Accuracy

The evaluation of positional accuracy of the Vive tracker was oriented towards the work
of Niehorster et al. (2017) who analyzed the accuracy of the spatial position of the Vive
headset as outlined in subsection 2.4.4. For each of the three physical setups described
in Figure 5.1.1, the tripod with the tracker or tracker and tablet was placed on each
marked grid point of the floor. The correct positioning of the tripod on each grid point
was checked with the laser range finder as described in Figure 5.1.1 and a maximum
placement error of 1mm was observed. The z-axis of the tracker for each setup was
aligned with the z-axis of the grid so that the front side of tracker and tablet were
facing the wall screen. The correct alignment of the z-axis of the tracker was checked
with a line laser that was also used during the application of the grid points on the
floor. The height of the tracker was measured for all three setups with the laser range
finder. These measurements gave a height of 1.26m for the tracker-only construction,
1.22m for the tracker at the top of the tablet and 1.16m for the tracker on the backside
of the tablet. At each grid point, 3 seconds of data were collected with the Unity script
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described in Figure 5.1.1 after ensuring that the tripods remained static for at least 30
seconds.

For data analysis, the Matlab scripts published by Niehorster et al. (2017) were
adapted to assess and plot the accuracy of the measured mean X-Z position at each
grid point for all three different setups. Before plotting the surrounding grid positions,
the origin of the plotted grid is set to the calculated mean X-Z offset of all measured grid
locations. Outgoing from this position, the remaining mean X-Z positions are plotted
along the grid. Although this might appear arbitrary at first sight, it reduces bias from
placement errors, while still being able to determine whether the reported positions fall
along a regular grid. For the two setups with the tablet mounts, this approach also
excludes possible bias from errors in offset calculation between tracker position and
tripod position. Although negligible, one drawback from this solution for the two tablet
mount setups is that the X-Z position on the plotted grid does not exactly match the
physical tracker position on the grid applied on the floor during measurement as it lacks
the tracker mount offset. The mean and median errors along the X and Z axis were
afterwards calculated for each mounting position. for the calculation of the error along
the Z-axis, subtracting the offsets caused by the tablet mount as defined in Figure 5.1.1
was necessary.

Tracking Precision

Data for assessing the precision of the Vive tracker was collected together with positional
accuracy data following the procedure described in the previous section. On each grid
point, reported pitch-, yaw- and roll-angle were recorded additionally to the reported X-,
Y- and Z-coordinates that were also used to assess positional accuracy so that precision
in all six degrees of freedom could be assessed. As with the evaluation of positional
accuracy, the tracking precision of all three mounting positions of the tracker was tested.
For this purpose, the RMS jitter as outlined in subsection 2.3.7 was calculated for each
degree of freedom and grid location and plotted in a heatmap. Furthermore, median
RMS jitter across the whole tracking space was calculated for each degree of freedom to
have a global measure for each mounting position. To further illustrate the spatial extent
of noise along the X-Z plane, the BCEA ellipses for each grid location and mounting
position were calculated and plotted as outlined in subsection 2.3.7 by adapting again
the Matlab Scripts from Niehorster et al. (2017). The median area of the BCEA ellipses
was additionally calculated for each mounting position.

Tracking Drift

For all three mounting positions, positional tracking drift as discussed in subsection 2.3.7
was assessed for all axes. All setups were placed on the grid at X-/Z-coordinate (0,0)
so that the z-axis of the tracker was aligned with the z-axis of the grid and tracker and
tablet were facing the wall screen. The tablet which is part of two of the three setups
was put into an angle of 68° at the pitch angle to imitate that a user standing in front
of the wall screen is holding the tablet. For the setup with the tracker at the backside
of the tablet, the height of the tracker was measured with 1.22m with the laser range
finder while for the other two setups the height of the tracker was measured with 1.25
m.
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After initiating data collection by pressing the trigger of the Vive controller, five
minutes of data were recorded with the data collection script in Unity. To avoid bias in
comparing the total length of drift paths caused by the varying frame rate in Unity, the
recorded data for each trial were downsampled to 40 fps which adds up to 1200 samples
per measurement. Although five minutes is a rather short measurement period for as-
sessing drift of the Vive tracker, there has been no possibility to increase the duration
of the measurement as the Vive tracker turns off automatically after five minutes if no
motion is detected. According to the manufacturer there is also no option to overrule
this behaviour. Given the observation during pre-testing that a drift by multiple cen-
timeters on the y-axis can occur if the lighthouses are already operated for a long period
of time, a higher measurement duration would have been interesting.

With the collected data, the total drift path Dp and the distance from centroid
metric (DFC) as outlined in subsection 2.3.7 were calculated in Matlab to compare
occurring drift for the three different setups. Furthermore, the drift paths along all
combinations of axes were plotted to allow visual comparisons of drift paths between
the three different setups.

Tracking Reliability

The reliability of tracking with the Vive tracker as defined in subsection 2.3.7 was
assessed in two different experiments. In the first experiment, data for the the static
reliability of the Vive tracker when it remains in a stable position was collected. For
this purpose, the same procedure as described in the previous section for collecting data
for tracking drift was repeated, except that no downsampling of the collected data was
performed. This produced five minutes of tracking data for each mounting position, with
which the ratio of frames in which tracking is available could be calculated.

However, it seems natural that in most cases loss of tracking occurs during movement
rather than in a static condition. To assess tracking reliability when the Vive tracker
is actually used with a tablet, a second experiment was performed. In a session lasting
20 minutes, the tablet was carried to each grid location in tracking space. On each grid
point, the available interactions (Tablet-to-Wall-Screen and Details-on-Demand) were
performed several times. Further typical user behaviour like walking around in front of
the wall screen with the tablet or sitting down on a chair were simulated. Furthermore,
different tablet holding positions that are likely to occur in an f-formation like holding
the tablet down to move it out of o-space were imitated at different grid locations. This
experiment was performed for both tracker mounting positions on the tablet, top and
backside. With the collected data, the ratio of frames in which tracking was available was
again calculated. Furthermore, with the last reported position and orientation before
the loss of tracking it was attempted to identify patterns when the loss of tracking is
most likely to occur.

Recall Rate

The recall rates for the gestures of the Details-On-Demand and Tablet-to-Wall-Screen
interactions were both tested in an experiment in which the tested gesture was repeated
at each grid point lying in the required interaction zone for the tested interaction. For
the Details-on-Demand interaction this means that it was tested from the three grid
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points (-1, 1.5), (0, 1.5) and (1, 1.5) as these are located in the personal interaction
zone and are also close enough to the wall screen for touch interaction. The Tablet-
to-Wall-Screen gesture on the other hand was tested on all grid points lying on the
positive z-axis. This area with a maximum distance to the wall screen of 2 m marks
approximately the outer edge of the implicit interaction zone for which the interaction
is available and includes 20 grid points for evaluating the recall rate.

On each grid point, the interaction was attempted 40 times. Between consecutive
attempts, the tablet was held static for at least five seconds to allow a cooldown pe-
riod between the single trials. For Details-on-Demand, the interaction was classified as
detected on a grid point when the user selected a node on the wall screen by touch
input and the Details-on-Demand view opened subsequently on the tablet that the user
was holding in his or her hands during the experiment. For Tablet-to-Wall-Screen, the
interaction was classified as detected when the tablet was intentionally tilted towards
the screen display as explained in subsection 3.4.3 and subsequently the tablet content
overlay window opened automatically on the wall screen. If one of the two interactions
was performed intentionally, but no corresponding view was opened on the tablet or
wall screen, the attempt was counted as not detected.

The recall rate was then calculated for each interaction globally with all samples
collected for the respective interaction and also for each grid point per interaction as

recall =
Tp

Tp + Tn

where Tp are the true positives, i.e. the number of interaction attempts that where
detected and Tn is the number of attempts that were not successfully identified. The
results pers grid point were also plotted on a heatmap similar to the adapted visual-
izations from Niehorster et al. (2017) in subsection 5.1.2. The calculation of a precision
rate that also takes false positives into account was omitted in this case, as false pos-
itives did not occur during evaluation. To gain realistic false positives that were not
created by purpose, different styles, postures and speeds of movement especially for the
Tablet-to-Wall-Screen gesture would have to be considered requiring a user study. Such
a user study in which precision rates could have also been measured was in fact planned
as part of an an accompanying Master thesis, but could not be conducted due to the
COVID19-pandemic in 2020.

Latency

For both implemented demonstrator interactions, the time elapsed between the detection
of the interaction and the final view adaption on the target device was calculated so
that latency measures could be collected. This was established for both interactions by
capturing the current system time at the time of interaction detection, passing it further
with the produced tracking message and calculating the time difference between this
forwarded timestamp and the current system time on the target device after the view
was finally changed.

For the Details-on-Demand interaction this means that the current time was cap-
tured at the beginning of the onNodeClicked() method of the Angular client instance
running on the wall screen when a node was selected by touch interaction. This times-
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tamp was then set as detectionTime and added to the NodeWallDisplayPressed mes-
sage being sent to the web socket server embedded in the Unity application. Inside the
Unity application, this detection time was only used as pass-through data. After the
determination of the tracker closest to the pressed node, this captured detection time
was forwarded to the tablet device as attribute of the ShowNodeDetails message that
has been determined as receiving device by the Unity application. In the data-service
of the receiving Angular client instance running on the tablet that handles the incoming
messages from the server socket, this detection time was added as read-only attribute
to the INodeDetails interface that holds all required data for the details-on-demand
component that has to be opened next. Finally,in the details-on-demand component
the elapsed time between interaction detection time and final rendering of the compo-
nent is calculated at the end of the update() method that makes as a last step final
rendering adjustments on the sankey diagram. The calculated result is then stored in
the Postgres database for further evaluation as the following extract form the method
illustrates:

1 const completionTime = Date.now();
2 const elapsedTime = completionTime - this.egoNode.detectionTime;
3 this._data.addMeasurement('DetailsOnDemand', this.egoNode.id,

this.egoNode.detectionTime, completionTime, elapsedTime).pipe().subscribe(
4 result => {
5 console.log(result);
6 },
7 e => {
8 console.error('[main] could not add measurement to database', e);
9 },

10 );

A similar procedure was followed for the Tablet-to-Wall-Screen interaction. In each
frame, the current system time is captured in the TrackerHandler script attached to
each tracker game object. If in the current frame the tilting gesture was detected, the
previously captured system time is added as attribute to the RequestTabletContent
message that is subsequently sent by the server socket to the Angular client instance
mapped with the tilted tracker. Together with the captured tablet content, the detection
time is at this stage again only passed through and sent back to the server socket in
the SendTabletContent message, which is subsequently forwarded to the Wall screen
instance of the Angular client. Here, in the event handler of the main component for
new incoming SendTabletContent messages, the latency is calculated and stored in
the Postgres database after all tablet content overlay windows have been reloaded. In
this case, the calculation of the elapsed time requires a conversion between different
timestamp formats, as the in Unity recorded C#-based detection time is expressed in
elapsed ticks since 1st January, 0001 00:00:00 UTC 2 , while the JavaScript-based current
time for calculating the elapsed time is expressed in milliseconds elapsed since st January,
1970 00:00:00 UTC 3. The following extract from the reloadtabletContetns() method
in the main component performs this task:

1 const completionTime = Date.now();
2 const dStart = new Date(1970, 0, 1);

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
3https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Date/now
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3 const convertedTimeFromUnity = - this.boundTabletContents[i - 1]
.requestTabletContentAttributes.detectedTime / 10000;

4 const elapsedTime = completionTime - this.boundTabletContents[i - 1]
.requestTabletContentAttributes.detectedTime;

5 this._data.addMeasurement('TabletToWallScreen', undefined, this.boundTabletContents[
i - 1].requestTabletContentAttributes.detectedTime, completionTime, elapsedTime)
.pipe().subscribe(

6 result => {
7 console.log(result);
8 },
9 e => {

10 console.error('[main] could not add measurement', e);
11 },
12 );

A real end-to-end latency measurement that takes also the time between the start
of the physical movement and the first reported position change in the Unity software
into account would have required the use of a high-speed camera similar to the setup of
Caserman et al. (2019) described in subsection 2.4.4 to compare the position changes
in camera frames with reported position changes. This could not be performed due to
the unavailability of such a high-speed camera and a hence, a minor bias remains for
the evaluated latency.

Before starting any trials, the PC that is hosting the Unity application and the wall
screen instance of the angular client was synchronized with the same time server as the
tablet devices (time.apple.com), so that no bias because of different system times could
be introduced. Latency measures for both interactions were then collected with only
the top mounting position of the tracker that performed better in terms of drift, jitter
and recall rate following a similar procedure as for the recall rate evaluation described
in subsection 5.1.2.

For Details-on-Demand, the interaction was tested at the three grid points (-1, 1.5),
(0, 1.5) and (1, 1.5) that are within reach for touch interaction. At each grid point,
five different pre-chosen nodes were selected on the wall display, so that the details-on-
demand-view was opened on the tablet device. The different nodes have a widely varying
number of direct neighbours ranging from three to 329 neighbouring nodes, which has
an impact on the computational effort for rendering the sankey diagram on the tablet
device in the details-on-demand view. Each different node was selected 20 times at each
grid point, so that with four pre-defined nodes 80 samples were collected at each grid
point producing a dataset with 240 samples in total. In an additional trial, 50 randomly
chosen nodes were selected from grid point(0, 0), for which again the latency and the
number of neighbouring nodes of the selected company were recorded.

For the evaluation of the latency of the Tablet-to-Wall-Screen interaction, data on
13 different grid points within the implicit interaction zone and closer were collected
representing the area that is expected to be used most based on the experiences during
functional testing. These points include the same three grid points in front of the wall
screen as for the Details-On-Demand interaction, all five grid points along the x-axis
at z = 1 and all five grid points along the x-axis at z = 0. At each grid point, the
tilting gesture was performed for the same two visualizations 20 times each, so that
from each grid point 40 samples were available. The first tested visualization on each
grid point was the graph of the company of interest with its 35 neighbouring nodes. The
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second tested visualization for the interaction was the details-on-demand visualization
of the company of interest showing the same 35 neighbouring nodes as sankey diagram.
For the test of this interaction, always the same node has been used, as it was already
observed during implementation that the dom2image library that captures the current
visualization on the tablet device as an image has an increasing runtime proportional
to increasing graph size, i.e. when the canvas area drawn by D3 contains more HTML
elements.

The distribution of collected latency measures and their possible correlation to dif-
ferent network sizes in the case of the details-on-demand interaction was then further
analyzed in Matlab.

5.2 Results

5.2.1 Positional Accuracy
Figure 5.3 shows the recorded mean X-Z positions per grid point and tracker mounting
position. For all mounting positions, most X-Z positions seem to fall along a regular grid.
Similar to the observations by Niehorster et al. (2017) however, the grids of measured
locations are slightly rotated from the physical orientation of the grid, indicating a small,
but consistent error in recorded positions, particularly along the Z-axis. While there is
no large difference visible between the setup with just the tracker and the tracker on
top of the tablet concerning this error, the error is noticeably more present when the
tracker is mounted at the backside of the tablet (see the three grids in Figure 5.3). For
all three configurations, it appears that this error is higher at the remote grid points of
the tracking area. For the tracker mounted on the backside of the tablet, no data could
be collected at the grid points (−2, 1.5), (1, 1.5) and (2, 1.5) due to the loss of tracking.

The mean and median error over all grid locations for each mounting position and
axis shows mixed results (see Table 5.1). Both mounting positions on the tablet (top
and backside) have a relatively small average error along the X-axis (0.06 and 0.53 cm
respectively), but perform worse along the Z-axis. Particularly the construction with the
tablet on the backside of the tablet has with 6.44 cm a relatively high mean error along
the Z-axis. It was expected that the tracker-only configuration has the lowest error along
all axes, as there is no risk of occlusion by the tablet, which occurred particularly in the
remote positions of the grid as Figure 5.3 also indicates. While this is indeed the case
for the Z-axis where the tracker-only configuration has a noticeably lower mean error of
0.49 cm, this configuration unexpectedly had a substantially higher mean error of 1.8
cm along the X-axis, which is roughly 30 times the mean error of the configuration with
the tracker at the top of the tablet and 3.3 times the error of the backside configuration
(see Table 5.1). Compared to the evaluation of the Vive tracker by Luckett et al. (2019)
who determined a mean error 4.92 mm for a similar-sized tracking area, the observed
accuracy in the trials of this thesis seems to be slightly lower due to the comparatively
high mean error of 1.8 cm along the X-axis for the tracker-only configuration.

Similar to Niehorster et al. (2017), Figure 5.4 shows the measured height above the
ground of the tracker on each grid location in a heatmap for each tracker mounting
position. For the tracker on the top of the tablet and the tracker-only configuration a
tilted reference frame as outlined in subsection 2.4.4 can also be observed for the Vive
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Figure 5.3: Reported mean X-Z position per measured grid location for each tested
physical setup (tracker only, tracker on the top of the tablet and tracker mounted on the
backside of the tablet) plotted along the grid on the floor.

Table 5.1: Mean and median error along X and Z axis over all grid points for each
mounting position in centimeter

Mean X Axis Median X Axis Mean Z Axis Median Z Axis
Tracker-only 1.80 1.69 0.49 0.3
Tracker Top 0.06 0.05 1.99 2.31
Tracker Backside 0.53 0.61 6.44 5.84

tracker, similar to the observations by Niehorster et al. (2017) for the Vive headset.
Both configurations report a height that is systematically offset at the remote measuring
locations along a diagonal through the tracking area, in which the center grid points
are closest to the physical height of the tracker (1.26 m for only the tracker and 1.22 for
the tracker on op of the tablet). This pattern is not observable for the tracker on the
backside of the tablet as Figure 5.4 shows. For this configuration, the reported height
varies considerably without a clearly identifiable pattern between the grid locations.
This increased variance of reported height is also visible in the range of reported height
values for each mounting position. While for the tracker-only configuration reported
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Figure 5.4: Recorded height of the Vive tracker at each grid location, measured for the
tracker only, tracker on the top edge of the tablet and tracker on the backside of the tablet
respectively. A different scale had to be used for the tracker on the backside of the tablet
because of more variance in reported height between grid locations.

height values have only a range of 2.13 cm, the backside-configuration has a range of
13.11 cm. With a range of 7.38 cm, the configuration with the tracker at the top of the
tablet lies in between.

5.2.2 Tracking Precision
For most dimensions, the observation by Niehorster et al. (2017) and Luckett et al.
(2019) that the lighthouse tracking with the Vive HMD and tracker respectively ap-
pears to provide a relatively high level of precision by showing low RMS jitter can also
be approved for the Vive tracker in this evaluation. There are however several noticeable
differences, especially between different tracker mounting positions. An overview of me-
dian RMS jitter across the whole tracking space for each degree of freedom and tracker
mounting position is provided in Table 5.2. From this table it can be derived that the
configuration with the tracker on the top of the tablet shows overall the lowest RMS
jitter with all median RMS jitter values below 0.01 cm and 0.01° respectively. These
results are comparable with the findings by Niehorster et al. (2017) for the Vive HMD.
Although most degrees of freedom of the tracker-only configuration have also a com-
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Table 5.2: Observed median RMS jitter of all measurements for each degree of freedom
per tracker mounting position (tracker only, tracker on top of the tablet and tracker on
the backside of the tablet)

Mounting Position Tracker-Only Top Backside
X (cm) 0.0068 0.0068 0.0146
Y (cm) 0.0060 0.0057 0.0095
Z (cm) 0.0070 0.0074 0.0102
Pitch (°) 0.2213 0.0061 0.0061
Yaw (°) 0.0060 0.0074 0.0107
Roll (°) 0.2214 0.0076 0.0109

parably low RMS jitter, two orientation angles (pitch and roll) showed unexpectedly a
considerably higher median RMS jitter with 0.2213° and 0.2214° respectively. As it was
expected that the tracker-only configuration shows overall the lowest RMS jitter because
it is not exposed to occlusion by the tablet, this measurement was repeated to rule out
errors during data collection. However, it led to the same observation. Expected was
on the other hand that the backside mounting position results in a tendentially higher
RMS jitter compared to the other setups with the exception of the two mentioned outlier
dimensions in the tracker-only configuration. Most degrees of freedom of the backside
configuration report an RMS jitter slightly above 0.01 cm and 0.01° respectively as again
can be derived from Table 5.2.

Based on Niehorster et al. (2017), RMS jitter was analyzed in further detail across
tracking space for each mounting position. Figure 5.5 shows the RMS jitter for each
degree of freedom and grid location for the tracker-only configuration. Looking at the
positional RMS jitter for the X-,Y- and Z-axis in this figure, the RMS level is relatively
constant across tracking space with a slightly increasing RMS level at the remote grid
locations, especially those that have a longer distance to the light houses, such as the top-
right corner in the heatmap for the X-axis and the bottom-left corner in the heatmap
of the Z-axis. For the orientation angles, there is a rather mixed picture as already
indicated before. While the distribution of RMS jitter for the yaw angle in Figure 5.5
is relatively low and consistent across the tracking space, the pitch and yaw angles
reported a significantly higher RMS jitter across the whole tracking space. For both of
those outlier angles, RMS jitter is lower around the center locations of the grid, but
still above 0.1°, which is still above the maximum RMS jitter for the yaw angle. In the
remote grid locations, the highest RMS jitter is reported for pitch and roll angle, for
instance with an RMS jitter of approximately 0.3° at the edge grid locations (−2, −1.5)
and (2, −1.5).

The configuration with the tracker on the top edge of the tablet, which had unex-
pectedly overall the lowest RMS jitter shows a similar, but slightly different pattern as
can be seen in Figure 5.6. The lowest level of RMS jitter of positional data is again
achieved on the Y-axis, which shows a relatively consistent jitter level across the track-
ing space with only two positions - (−2, 1.5) and (0, −0.5) - having an RMS jitter above
or close to 0.01. For the X- and Z-axis, a slight, diagonal gradient heading in opposite
directions can be observed. While for the X-axis RMS tends to be slightly higher in
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Figure 5.5: RMS jitter at each grid location with only the tracker on the tripod shown
on a heatmap. RMS jitter is shown separately for each degree of freedom. For the RMS
jitter of orientation angles, different scales had to be used due to substantial differences
in RMS jitter.

the upper-right corner, the same is the case for the Z-axis in the lower left corner. This
would again indicate that RMS jitter along these two axes is higher in areas that are
located farther away from the lighthouses. The RMS level in yaw orientation is similarly
low and consistent as in the tracker-only configuration. Pitch and roll orientation show
a slightly higher, but still relatively consistent level of RMS across the tracking area
with some higher values at the edges of the tracking area and are considerably lower
cmpared to the tracker-only configuration.

The level of RMS jitter per degree of freedom across tracking space for the con-
figuration with the tracker on the backside of the tablet is illustrated in Figure 5.7.
Except for the yaw orientation angle which has the same median RMS across tracking
space as the top configuration, there is a generally higher RMS level present. This is
particularly visible for the X-axis of the positional tracking where most grid locations
of the right half have and RMS jitter of about 0.02 cm. A possible reason for this might
be that with the backside configuration the tracker is most of the time only visible to
one lighthouse in this area, as the tablet limits sight for the lighthouse located closely to
grid location (2, −1.5). The Y- and Z-axis show no clear pattern, but it is recognizable
that higher RMS levels appear preferably, but not only on grid points close to the edge
of the tracking area. As with the other two configurations, the yaw angle is also for the
backside configuration the angle with the lowest RMS level. For the generally higher
RMS level in the pitch and roll angles, the upper left half of the tracking area appears
to be more prone to a higher RMS.
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Figure 5.6: RMS jitter at each grid location with the tracker on the top edge of the
tablet shown on a heatmap. RMS jitter is shown separately for each degree of freedom.

Figure 5.7: RMS jitter at each grid location with the tracker at the backside of the
tablet shown on a heatmap. RMS jitter is shown separately for each degree of freedom.
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Figure 5.8: BCEA ellipses showing the spatial extent of samples across the X-Z axes
for each tracker mounting position. 68 % of all samples per grid location are within the
plotted ellipse. The red line indicates 1mm.

The spatial extent of RMS jitter across the X-Z axes can be seen in the plotted
BCEA ellipses per grid location in Figure 5.8 for each of the tested mounting posi-
tions. The ellipses in these figures for each grid location show the size of the area in
which 68% of the samples fall into and also indicate whether the noise is isotropic
or has a larger magnitude on a certain axis. While the median area of the BCEA
ellipses are relatively close together for the tracker-only and tracker-on-top-of-tablet
configuration with 0.00557mm2 and 0.00549mm2 respectively, the BCEA ellipses of the
tracker-on-backside-of-tablet configuration have a considerably higher median area with
0.01950mm2. This is also visible in the plots in Figure 5.8. The spatial spread of tracker
noise is rather isotropic for the tracker-only configuration and the tracker mounted on
top of the tablet, although this setup shows already outliers at two grid locations in
which the spatial spread is distributed diagonally from the positive Z-axis to the posi-
tive X-axis. This pattern is also the case for most ellipses of the setup with the tracker
on the backside of the tablet, which has a considerably larger spatial spread along the
X-Z axes on most grid locations as Figure 5.8 again shows.

5.2.3 Tracking Drift
Table 5.3 shows shows the results for the calculated total drift path and the distance
from centroid measure (DFC) for each tested physical setup. The DFC was generally low
with the lowest value of 0.15 mm for the configuration with the tracker at the top of the
tablet and the highest value for the configuration with the tracker at the backside of the
tablet (1.06 mm). Compared with Luckett et al. (2019) who determined a DFC between
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Table 5.3: Total drift path and distance from centroid (DFC) for the three different
Tracker Setups

Drift Path (m) DFC (mm)
Tracker-only 1.61 0.20
Tracker Top 1.16 0.15
Tracker Backside 2.22 1.06

Table 5.4: Achieved availability of tracking of tracking for each mounting position in
a static and dynamic environment as specified in the experiment description in subsec-
tion 5.1.2

Tracker-only Tracker Top Tracker Backside
Static Reliability 100% 100% 100%
Dynamic Reliability — 98.42% 97.54%

0.45 and 0.48 mm for the Vive HMD, the DFC for the Vive tracker was considerably
lower for the tracker-only configuration and the configuration with the tracker on the
top of the tablet (0.20 and 0.15 mm). The configuration with the tracker on the backside
however seems to be comparatively prone to drift as the higher DFC (1.06 mm) indicates.
Also the total drift path is as twice as big (2.22 m) compared compared to the trial
with the tracker at the top of the tablet (1.16 m). Another interesting observation is
that the tracker-only configuration without any possibly occluding tablet has a larger
drift path (1.61 m) and a slightly higher DFC (0.20 mm) compared to the tracker on
the top of the tablet.

The comparatively high differences in drift between the different setups can also be
observed visually in the plotted drift paths in Figure 5.9. The red lines for the tracker-
only configuration and the yellow line for the tracker on the top of the tablet overlap
in large parts on all axes which indicates that they have a relatively similar drift path.
Both configurations have not many outliers and most of the drift path is located at
the center of the plot indicating that most points in the drift path remain below 0.4
mm position change. For the x-axis compared with the Z-axis (see the second plot in
Figure 5.9) the drift path appears almost congruent for both configurations. The drift
path for the tracker at the backside of the tablet (see blue lines in Figure 5.9) on the
other hand is considerably larger and the larger extents in position change are clearly
visible in the plots.

5.2.4 Tracking Reliability
The collected data for static reliability were first validated to show a normal distribution
with a Kolmogorov-Smirnov test. The calculation of the ratio of frames in which tracking
was available showed as expected that the tracking reliability of the of the Vive tracker
in a static condition is rather high. In fact, for all three tested physical setups the
availability of tracking was 100%, meaning that in no frame tracking was lost (see
overall results in table Table 5.4).

The dynamic reliability that was tested for the two physical setups involving a
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Figure 5.9: Drift paths for the Vive tracker for all combinations of axes in the three
different setups. Although drift between samples remains well below 1mm, considerable
differences between physical setups can be found such as a higher drift path for the
configuration with the tracker on the backside of the tablet (see blue lines).

tablet showed as well a relatively high reliability for both tracker mounting positions.
During the experiment with the tracker mounted on the top edge of the tablet, in
98.42% of all frames tracking was available. This availability of tracking decreased only
slightly when testing the tracker mounted on the backside of the tablet. For the backside
mounting position, in 97.54% of all frames tracking was available, resulting in only a
minor difference of 0.88% between the two setups. This difference between the two
collected datasets is statistically significant according to a Wilcoxon ranksum test with
a p-value of 1.7875 × 10−17 at a 5% confidence level.

For the top mounting position of the tracker, in 1196 out of 75590 frames tracking was
not available. As the Vive tracker repeats the last reported spatial data when tracking is
lost these 1196 frames could be reduced to 33 unique occasions when tracking was lost.
For these 33 unique last reported position and orientation samples, a pattern can be
observed for two degrees of freedom: the Z-coordinate and the pitch-angle. Most loss of
tracking for this setup appears to occur at a Z-coordinate of approximately 1.70 - 1.90
m and a pitch-angle of 300° - 360°. For the tested tracking space this means most of the
time tracking is lost when the user is standing with the tablet directly in front of the wall
screen, as the left plot in Figure 5.10 showing the last reported X-Z positions illustrates.
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Figure 5.10: Last reported positions along the X-Z axes before the loss of tracking that
still fall within tracking space for the dynamic reliability test with the tracker on the top
edge of the tablet(left) and the tracker on the backside of the tablet (right). The location
of the wall screen is indicated by the red line. Samples that have reported a position
located significantly outside tracking space before the loss of tracking are not shown.

18 samples are not shown in the plot as the last reported Z-coordinate exceeds two
meters - some by several meters - and would therefore be located behind the wall screen
and most of them also outside of the room. Those partially rather extreme outliers are
probably caused by an increased jitter right before tracking is lost completely. The last
reported pitch angle furthermore indicates that this loss of tracking frequently occurs
when the tablet is turned towards the wall screen as during the Tablet-to-Wall-Screen
gesture. A possible explanation for this spatial concentration of tracking loss could be
that the small area right in front of the wall screen was more prone to occlusion in the
lab setting as the wall screen and the back of the user partially block the field-of-view
of the two lighthouses. Furthermore, the wall screen could influence the reflection of
IR light emitted by the lighthouses when the tracker is located very close to the wall
screen. For instance, Rädle et al. (2014) observed during their work on the HuddleLamp
prototype that mobile device screens have only rather low IR light reflections.

For the backside mounting position, tracking was lost in 1649 out of 67033 frames.
Similar to the top mounting position, 22 occasions in which tracking was lost could be
derived from the dataset by removing the frames repeating exactly the same spatial data
as in the previous frame. These are eleven occasions less compared to the top mounting
position, although the overall reliability of the backside mounting position was 0.88% less
as explained before. Also for the backside mounting position, it appears that tracking
is preferably lost in front of the wall screen, as the right plot in Figure 5.10 shows.
Compared to the top mounting position however, there is no concentration within a
particular area, points are more scattered around the X-axis. Similar to the observations
for the top mounting position, most loss of tracking occurs also after a certain pitch
angle (30° - 70°) was reported in combination with the position reports close to the wall
screen. This might again be caused by occlusion during performing the Tablet-to-Wall-
Screen gesture. As with the other mounting position, not all last-reported coordinates
are visible in the plot in Figure 5.10 for the backside mounting position, as ten samples
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Figure 5.11: Heatmaps showing the recall rates for the Details-On-Demand interaction
for each tested grid point in the trials. Left the trial with the tracker mounted at the top
of the tablet, right with the tablet mounted on the backside of the tablet.

reported a Z-coordinate of 2.50 m and higher.

5.2.5 Recall Rate
The evaluation of recall rates of the Details-on-Demand interaction showed no large
differences between the two tracker mounting positions. While the overall recall rate
of the top-mount position was calculated with 95%, the recall rate for the backside-
mount position accounted for 93%. According to a Wilcoxon-ranksum test, there is
also no statistically relevant difference between the two different datasets and recall
rates at a 5% confidence level. Looking at the recall rates for each tested grid point,
there are indications that the interaction works less reliable at the right side of the
wall screen (see X-coordinate 1 in Figure 5.11). For instance for the backside mounting
position, the recall rate drops down to 80% in that area. This is probably caused by an
increased susceptibility to occlusion in that area, especially for the backside mounting
position. While the field-of-view of the lighthouse located near grid point (2, -1.5) is
largely occluded by the user facing the wall screen and the tablet in case of the backside
mounting position, the lighthouse located near grid point (-2, 1.5) detects the tracker
in that area only in the edge area of its field-of-view.

Concerning the Tablet-To-Wall-Screen interaction there is a noticeable difference
between recall rates. While the overall recall rate with the tablet at the top of the
tablet was 95.9%, a recall rate of only 85.6% was achieved with the tablet mounted at
the backside position, having a 10.3% lower recall rate. For this trial, the differences
in recall rates for each grid point and mounting position were statistically significant
according to a Wilcoxon ranksum test with a p-value of 0.0021 at a 5% confidence level.

When the recall rates per grid location between the two mounting positions are
compared as in Figure 5.12, additional details can be observed. For both mounting
positions, the heatmap indicates that the recall rate is higher at grid points that are
closer to x = 0 along the Z-axis, i.e. are located around the middle of the interaction
zone. For instance, the top mounting position has a recall rate of 100% for all grid points
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Figure 5.12: Heatmaps showing the recall rates for the Tablet-to-Wall-Screen interaction
for each tested grid point in the trials. Left the trial with the tracker mounted at the top
of the tablet, right with the tablet mounted on the backside of the tablet.

along the z-axis with x = −1 and x = 0, as well as for grid point (1,1). The recall rate
is considerably lower in the remote areas of the grid that are not optimally visible to
both lighthouses. This is especially applicable for the backside mount position, which
achieved rather low detection rates at x = −2 along the Z-axis with the lowest detection
rate of 0.5 at (-2,1).

5.2.6 Latency
The latency for Details-on-Demand measured as explained in subsection 5.1.2 resulted
in a mean of 805 ms and in a median of 808 ms. The different latency samples showed
no large variance and the whole dataset as well as the samples per tested grid location
were normally-distributed according to a Kolmogorov-Smirnov test. The threshold for
the lower-25% quartile and upper-75% quartile show that 50% of all measurements lie
between 734 and 872 ms. The picture changes slightly when the samples are analyzed for
each tested grid location, as the boxplots in Figure 5.13 show. While the measurements
per grid point are generally still relatively close together as the boxplots and the data
in Table 5.5 show, grid point (1, 1.5) shows a slightly higher latency compared to the
middle position at grid point (0, 1.5). The median latency at grid point (1, 1.5) is 48
ms higher compared to the middle position. The threshold for the lower quartile at (1,
1.5) is higher than the median at the middle position. Those two grid location show also
divergent outliers as can be seen in Figure 5.13. While at grid point (0, 1.5) there are
two outliers with a comparatively low latency, one sample at grid point (1, 1.5) showed
a latency of over 2000ms. This aligns with the observation during testing that grid point
(1, 1.5) was more prone to occlusion and that recall rates as well as RMS jitter have
performed weaker at that location. According to a Wilcoxon rank sum test, the latency
difference between this grid point and the middle gridpoint at (0, 1.5) is statistically
significant with a p-value of 0.002 at a 5% confidence level.

The test with randomly chosen nodes and comparing their number of neighbours
with the measured latency showed that there is no correlation between the number of
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Table 5.5: Means, medians and quartile thresholds of Details-On-Demand latency per
grid location, all numbers in milliseconds.

Grid Location Mean Median Lower quartile Upper quartile
(-1, 1.5) 801 797 749 855
(0, 1.5) 771 779 692 850
(1, 1.5) 843 837 784 898

Figure 5.13: Left: Boxplot for the latency measures for Details-on-Demand for each
tested grid point location. Right: Scatterplot between measured latency and number of
neighbours for selected node indicating that there no such correlation.

neighbour nodes and latency for the Details-on-Demand interaction as illustrated in
Figure 5.13. The correlation coefficient accounted only for 0.3181. Although for many
neighbouring nodes more data such an company names s have to be fetched from the
database and the rendering of the sankey diagram is more complex, this does not seem
to have a noticeable effect on latency.

Compared to Details-on-Demand, the Tablet-to-Wall-Screen interaction shows a
slightly higher latency with a mean of 915 ms and a median of 898 ms over all sam-
ples. This is a 110 ms higher mean and a 90 ms higher median compared to Details-on-
Demand. The data samples were again checked for normal distribution with a Kolmogorov-
Smirnov test which showed that all sankey and graph samples as well as the whole data
set are normally-distributed. The distribution of latency times whithin the samples were
then analyzed for the whole dataset and each transferred visualization type. The box-
plots in Figure 5.14 already indicate a noticeable latency difference between the sankey
diagram which is part of the Details-on-Demand view on the tablet and the graph vi-
sualization of the company of interest. The Tablet-to-Wall-Screen interaction appears
to have a lower latency when the graph visualization rather than the sankey diagram
is transferred to the wall screen. While for the sankey diagram samples, the median is
942 ms, the graph samples show only a median latency of 824 ms (see Figure 5.14).
Compared further, the samples enclosed by the thresholds of upper and lower quartile
do not show any overlap between the two visualization types as can also be seen in
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Figure 5.14: Left: Boxplots of the latency measures for the Tablet-to-Wall-Screen inter-
action per transferred visualization and in total. Right: Median latencies of all samples
independent from visualization type per tested grid location.

Table 5.6: Means, medians and quartile thresholds of Tablet-to-Wall-Screen latency per
visualization type, all numbers in milliseconds.

Visualization Type Mean Median Lower quartile Upper quartile
Sankey 962 942 902 992
Graph 869 824 786 886

Figure 5.14. While the upper quartile of the graph latency samples has its limit at 886
ms, the lower quartile of the sankey samples starts at 902 ms, creating a gap of 16 ms
between those two thresholds. The difference between those two different visualization
type datasets is also statistically significant according to a Wilcoxon ranksum test with
a p-value of 1.36885284317371 × 10−40 at a 5% confidence level. As already indicated
in subsection 5.1.2, debugging of the Angular client application showed that the major
part of that difference originates from the dom2image library which requires more time
to convert the sankey diagram into a data url compared to converting the graph visu-
alization to a data url. This is caused by a higher runtime complexity when the library
has to convert a sankey diagram as it has a more complex HTML structure than the
graph visualization.

Compared to the Details-on-Demand interaction, Tablet-to-Wall-Screen appears also
to be noticeably more prone to outliers independent from the visualization type as
the boxplots in Figure 5.14 indicate. While for Details-on-Demand, only four samples
were considered as outliers in the dataset, the Tablet-to-Wall-Screen samples contain
18 outliers when the whole dataset is considered. If outliers are counted separately for
each used visualization type in the Tablet-to-Wall-Screen interaction, eleven samples
are classified as outliers within the sankey samples and 21 samples within the graph
samples respectively. The larger presence of outliers is probably caused by an increased
RMS jitter and the loss of tracking in single frames during the physical execution of
the gesture as described in the evaluation section for tracking reliability, while during
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Figure 5.15: Number of detected latency outliers for Tablet-to-Wall-Screen per grid
location. Left for the sankey diagram samples, right for the graph visualizaion samples.

Details-on-Demand the tracker is in a comparatively stable position. However, this would
have to be examined in further detail. There are also indications that outliers appear
more frequently at rather remote grid points or at points that are prone to occlusion as
the number of outliers per grid point in Figure 5.15 show.



Chapter 6

Discussion

6.1 Results
The interactive supply chain network prototype with two spatially-aware interactions
for more natural content exchange across mobile devices and a wall screen that was
completed as part of this Master’s thesis confirms that the Vive lighthouse tracking in
combination with Vive trackers can be used without much restrictions outside its in-
tended VR domain to build spatially-aware interactions for the real environment. Both
interactions, Details-on-Demand and Tablet-to-Wall-Screen worked as expected after
implementation and no major difficulties that could be related to the Vive tracking
were observed. During functional testing, recall rates across different testers were con-
stantly high and latency times between initiating an interaction and the subsequent view
adaption of the tablet or wall screen visualization were perceived as low. One frequently
mentioned issue for the Tablet-to-Wall-Screen interaction was however that the overlay
window that is opened on the wall screen after detecting the gesture is not opened ex-
actly at the expected area of the wall screen. This is probably by the observation that
it is not clearly transparent for the user performing the gesture where the raycast of the
tracker hit the wall screen right before the gesture event was fired. It is difficult for the
user to aim at a specific area with high accuracy, as the raycast of the tracker is hitting
the wall screen game object in Unity many times before the physical movement of the
gesture stops. It is therefore difficult to align the firing of the gesture event with the
perception by the user when he or she thinks that the gesture was completed. Under-
estimated was also the influence of the wall screen on tracking stability, which can also
be seen in the results of the dynamic stability experiment outlined in subsection 5.2.4.
Although it was subjectively not often recognized, loss of tracking occurred directly in
front of the wall screen comparatively often. However, this could probably be improved
by optimizing the physical locations in further trials.

The research question whether the Vive trackers provide a sufficient level of accuracy,
precision and reliability to implement spatially-aware cross-device interactions in the
real environment can be answered fundamentally with yes. This can for instance be
determined from the measured recall rates for both interactions, where for the top
mounting position 95% for Details-on-Demand and 95.9% for Tablet-to-Wall-Screen
were achieved. Means and medians of latency times were also acceptable and below
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900ms for Details-on-Demand and 1000ms for Tablet-to-Wall-Screen. However, these
numbers were unexpectedly high as the view adaption on the tablet or wall screen is
already visible before the final rendering is completed and the completion timestamp for
the latency evaluation was recorded. If the Vive tracking is the actual focus of evaluation,
this experiment should be repeated without the overhead of rendering a website on the
receiving device, so that only the time between gesture detection and arrival of the
notification at the receiving device is measured. Looking deeper at the actual reported
tracking data during evaluation, the configuration with the tracker mounted at the
top of the tablet achieved in most tested dimensions similar values as the tracker-only
configuration. The positional error around the XZ-axis was similarly low compared to
the tracker-only configuration, but the axes with higher error were switched. While for
the tracker-only configuration, the error along the X-axis was considerably higher, for
the tracker on the top of the tablet this applies for the Z-axis. The observation of tilted
reference frames was more present for the tracker on the top of the tablet with a reported
height value range of 7.38cm in comparison to 2.13cm for only the tracker. However, for
the interactions implemented in the scenario, the Y-coordinate does not play a crucial
role. Concerning tracking precision measured with RMS jitter, the tracker mounted on
the top of the tablet showed an almost equally low RMS jitter compared to the tracker-
only configuration except the pitch and roll angles where RMS error was unexpectedly
higher for the tracker-only configuration. Similar observations were made for tracking
drift where the tracker mounted on the top of the tablet showed a shorter drift path
and a lower distance from centroid compared to the tracker-only configuration.

During evaluation it was actually also planned to assess the rotational accuracy of
the Vive tracker. This has however proven to be difficult with the available equipment
for evaluation. It was unfortunately hardly possible to adjust tracker and tablet on
the tripod mount on all three orientational degrees of freedom exactly to a pre-defined
value, as with most manual adjustments at one angle introduced small, but for technical
evaluation unacceptable placement errors on other angles. Assuming that a set of at least
five pre-defined positions should be tested, this turned out to be too much effort. A more
efficient approach was undertaken by Luckett et al. (2019) who moved the tracker into
random orientations and measured the ground truth angles with two laser range finders
as described in subsection 2.4.4 as this does not require an exact placement of the Vive
tracker.

The comparison of tested tracker mounting positions revealed that only the mounting
position on the top seems to provide an acceptable of level accuracy, precision and
reliability. Although it was already expected that the backside mounting position was
technically at a disadvantage because of the higher exposure to occlusion, this conclusion
was to some extent not expected as during functional testing the backside mounting
position performed subjectively well. However, if this perceptions are operationalized
as it was done with the technical evaluation, the picture changes. The most visible
difference for the user lies in the difference of recall rates between the two mounting
positions. While the recall rate for Details-on-Demand is similar for both mounting
positions(95% for the top position and 93% for the backside position), the recall rate for
Tablet-to-Wall-Screen drops from 95,9% for the top position to 85.6% for the backside
position. Especially in the remoter areas of the tracking area, the top mounting position
of the tablet achieves a higher recall rate. This observation gets also underlined by the
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evaluation of the recorded tracking data. The mean positional error for the top mounting
position was 0.47cm lower on the X-axis and 4.45cm lower on the Z-axis. Unlike the top-
mounting position in which a small, but consistent error for the reported Y-coordinate
along the grid could be observed, the reported height of the backside mounting position
was rather noisy along the grid and reported height values had also a higher range,
which was 13.11cm in comparison to 7.38cm for the top mounting position. Across all
six degrees of freedom, the top mounting position showed also a considerably lower
level of RMS jitter. This difference in precision was further observable in the median
areas of the plotted BCEA ellipses along the grid. While the top mounting position
achieved a median area of 0.00549mm2, the median area of the BCEA ellipses for the
backside mounting position was 0.01950mm2. Rather high differences in tracking drift
also speak for the top mounting position as the more suitable position. The drift path
for the backside mounting position has approximately twice the length of the drift path
for the top mounting position (2.22m instead of 1.16m for the top mounting position).
The difference in the distance of centroid (DFC) measure is still bigger. While the top
mounting position has a DFC of 0.15mm, the backside mounting position has a DFC
of 1.06mm. Putting all these measures together, the top mounting position provides
a higher level of accuracy, precision and reliability, which finds also expression in the
higher recall rates for this mounting position, while recall rates for the backside mount
make this position a rather unacceptable solution.

6.2 Limitations
Although as outlined in the previous section the work on this thesis approved that there
are no invincible technical barriers for using Vive trackers in a Non-VR application and
that they provide a sufficient quality of tracking for the scenario, not much data about
the usability and user experience concerning the actually implemented demonstrator
interactions could be collected. A user study would have given here more insight how
the users are actually experiencing and using the spatially-aware interactions during the
work on a real-world task. Although informal functional tests with different users were
also performed during implementation, a user study would also have been interesting
from the technical perspective, as gestures such as the Tablet-to-Wall-Screen gesture can
be performed in many different ways depending on the person. Analysing the different
interpretations of this gestures by the users would have given valuable insights to adapt
thresholds in the detection of those gestures so that they can be detected more reliably
independent from varying users.

Furthermore, the implemented interactions are relatively tightly coupled to the
user interface of the supply-chain network prototype. While this seems natural for the
Details-on-Demand interaction in which a details-view with problem domain-specific
data is opened on the tablet, the Tablet-to-Wall-Screen interaction could have been
made more universally applicable. The problem here lies not in the server socket appli-
cation or the Unity application detecting the spatial events that are both re-usable and
extendable, but in the used tablet devices. Unlike other mobile device platforms such
as Android or Windows, iOS does not fully support the WebRTC1 protocol, which with

1https://webrtc.org/
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the Tablet-to-Wall-Screen interaction could have been implemented on an application-
independent level. The WebRTC protocol provides a facility to share the screen of a
device embedded into a website. With his feature it would have been possible to share
arbitrary tablet content embedded on the wall screen instance of the Angular client
with the Tablet-to-Screen gesture. Unlike the existing implementation, this would also
not have been a read-only copy of the tablet content during gesture execution. Instead,
it would have remained manipulable. This partially tight coupling between interactions
and user interface makes also the latency measures specific to the problem domain of
the thesis, as they were tested with visualizations that were specifically implemented
for this scenario.

A final limitation was furthermore identified in the evaluation of tracking precision
of the tracker-only setup. As outlined in subsection 5.2.2, the pitch and roll angles of
the tracker had a considerably higher RMS jitter compared to the two configurations
involving a tablet. Although the differences in RMS jitter between the different mounting
positions were statistically significant and this pattern was also reproducible, it seems
unlikely that the tracker’s RMS jitter of pitch and roll angles worsens when the tracker
is tested without a possibly occluding tablet. The measure RMS jitter for those two
orientation angles during evaluation was furthermore considerably higher as during the
evaluations of the Vive HMD by Luckett et al. (2019) and Niehorster et al. (2017).
Although these evaluations are not directly comparable as they measure RMS levels
of the Vive HMD and not the tracker, this might be an indication of a unidentified,
systematic error during data collection for the tracker-configuration as both device are
tracked with the same Lighthouse tracking. From at least this measurement, no general
conclusions should be derived.

6.3 Future Work
Before the submission of this thesis, work was already started on integrating the detec-
tion of the already implemented spatial events into a re-usable API that will be made
available as a Unity plugin and whose source code will be published under the MIT
license. In fact, a project proposal has already been submitted to the XR4All Open
Call 2 in November 2020 to receive funding to continue work on this framework. The
motivation behind this is similar to the Proximity Toolkit by Marquardt et al. (2011) to
encourage developers and researchers to make use of spatially-aware interactions in their
applications and prototypes and to further explore novel ways of interaction with their
own ideas. The first working version of this API will be based on the spatial concepts
applied in this thesis and will include events for the transition of Vive trackers between
interaction zones, the already covered tilting gesture for Tablet-to-Wall-Screen and the
detection of f-formations between tracked devices or tracked devices and a fixed entity
such a wall screen. The API will be further enhanced by additional spatial concepts
and gesture after reviewing more literature. By applying this API in their own work,
researchers will be able to focus more on their actual research questions related to spa-
tial awareness, as the low-level implementation details of the supported events in the
API are already covered.

2https://xr4all.eu/opencall/
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The final objective is that this API is not limited just to the real environment.
Instead, it should also be usable for cross-virtuality applications or VR-only applications
where one of the covered events can be re-used. By adding AR or VR users wearing an
HMD as additional entities in the framework, the spatial events in this API could also be
used for interactions across the virtual reality continuum. For instance, the tablet tilting
gesture could also be directed towards a VR headset to share a 2D visualization with
users currently working in virtual reality. This would add a further dimension to Weiser’s
vision of ubiquitous computing. Devices would not only integrate themselves seamlessly
into their environment by ensuring natural cross-device interaction, but would also
interact seamlessly across virtualities.



Appendix A

Discarded Interactions

Most of the interactions that were sketched during the design process and discarded
later do not directly deal with cross-device interaction as the following figures will
show. Initially, the focus was more on user tracking to allow a variety of gestures to
allow interaction with the graph from a distance. However, as during the design phase
it turned out that the lack of seamless content transmission between devices was a
bigger paint point, these were discarded. It has also to be admitted most of the sketched
interaction would have required sophisticated hand and finger tracking, which probably
also would have gone beyond scope of this thesis.

Figure A.1: Sketch of the discarded intersection highlighting interaction. By holding
two tablet devices closely towards each other, the overlapping parts of the two different
networks shown on on each tablet should be highlighted to identify intersections in the
two networks.

124



A. Discarded Interactions 125

Figure A.2: Sketch of the scrolling interaction between a user and the wall screen. By
pointing into a certain direction, the graph view on the wall screen should scroll into the
pointed direction.

Figure A.3: Sketch of the zooming gesture to adapt the graph view on the wall screen.
By moving hands closer together, the graph visualization on the wall screen zooms deeper
into the graph. By increasing distance between hands, the graph on the wall screen should
zoom out respectively.
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Figure A.4: Sketch of the pointing gesture. By pointing on a node displayed on the wall
screen with the forefinger, this node should be highlighted on the wall screen similar to a
laser pointer for better visibility for other team members.

Figure A.5: Sketch of the Move/Long Press gesture. By selecting a node on the wall
screen as described in the previous sketch and additionally putting the thumb of the
selecting hand up, the drag interaction of the mouse should be imitated so that nodes
can be moved and rearranged from a distance.



Appendix B

Source Codes

B.1 Source Code Interactive Graph Prototype
The source code of the adapted supply chain network prototype can be retrieved under
the URL https://gitlab.com/Danny81/hive-graph from Gitlab. The project is published
under the MIT license and students and researchers are invited to re-use and modify it
for their work.

The DDL script for deploying all necessary database objects in the Postgre database
is located in the database folder. The NodeJS backend is located in the server folder
of the repository, the Angular client application can be found in the client folder. For
further instructions on how to set up the environment and system requirements, see
also the ReadMe facility on Gitlab.

B.2 Source Code Web Socket Application
The web socket server class library implemented for tracking message distribution can as
well be retrieved from Gitlab under the https://gitlab.com/Danny81/hivetrackingsocket/
and is also published under the MIT license. Students and researchers are invited to
welcome to use this project as starting point for their work.

B.3 Unity Device Tracking Application
Finally, the source code of the Unity application managing the Vive trackers and
detection of spatial events can also be retrieved from Gitlab under the URL https:
//gitlab.com/Danny81/realtracker. This project is as well published under the MIT li-
cense and could be particularly interesting for students or researchers continuing work
with spatially-aware events in similar settings.
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Technical Evaluation

All Matlab scripts produced during the technical evaluation in section 5.2 were made
publicly available and can be retrieved via the URL https://gitlab.com/Danny81/hcc-
vive-tracker-evaluation/ from Gitlab. The data folder contains for each experiment the
tracking tracking data collected with the Unity script, some of them per grid point
depending on the experiment. The raw data has already been imported into a Matlab
file which is also stored in each folder per experiment. Raw data from the Unity script
can be brought into this format by using the buildGridDataFromSamples Matlab script
committed in the root folder of the repository. The analysis folder contains the Matlab
scripts implemented to calculate the analyzed tracking measures and to produce the
figures used in this Master’s thesis. This might be a helpful reference for students and
reserchers working on a similar technical evaluation.
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