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Abstract

Since Augmented Reality (AR) was first mentioned in the 1990s [4], the domain has
evolved greatly in terms of available technologies and interaction possibilities. While
users can view and explore three-dimensional data stereoscopically, interacting with such
data in a three-dimensional space has proven to be difficult. Despite the development of
many new input devices in the wake of the second wave of virtual reality [3], no standard
has yet emerged for interacting with such objects in a mixed reality environment. Typical
approaches which use controllers and gestures hold numerous drawbacks. Problems such
as the gorilla-arm-effect and the lack of tactile feedback make good interactive handling
in 3D space difficult.

This master thesis investigates the use of three-dimensional interactions using a
touch-sensitive tablet, in order to determine if such are suitable for exploring a three-
dimensional object in AR. The focus lies on the interaction possibilities, the usage of
a tablet would offer, which are intended to make it easier for the user to deal with
volumetric data in AR through spatial and touch-based input. This hybrid form of
input offers an intuitive way to visualise modified volumetric data in the user’s real
environment and to manipulate and explore it in a meaningful way through intuitively
designed actions.

First, the foundation for the topic is laid by presenting related projects which also
deal with interacting with 3D data. Then, different input devices are described be-
fore the interaction techniques themselves are discussed. The gathered information is
then used to design a concept for an AR-based prototype using interactions based on
touch-based and spatial gestures, while the panel-like shape of the tablet is used for
intuitive inspection features. The design of this application is being incorporated into a
corresponding prototype, which is evaluated in the course of a qualitative user study.

The focus of this study lies on how the user perceives the usage of the tablet as
an input device and the possible actions which can be applied to virtual objects. The
result showed that a tablet is predominantly perceived as a good and intuitive input de-
vice. In addition, the handling of touch-based and spatial gestures was understandable.
When examining the data set, two-dimensional data could be stored from the three-
dimensional model. All study participants agreed that the use of a marker to indicate
the origin of the data was sufficient to draw a connection between 2D and 3D and to
understand the information context of the two-dimensional data.
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Kurzfassung

Seit Augmented Reality (AR) in den 1990er Jahren das erste Mal erwähnt wurde [4], hat
sich die Domäne im Bezug auf vorhandene Technologien und Interaktionsmöglichkeiten
stark weiterentwickelt. Obwohl es Nutzern erlaubt drei-dimensionelle Daten stereosko-
pisch zu betrachten und zu erkunden, erweist sich die Interaktion mit solchen Daten im
drei-dimensionellen Raum als schwierig. Trotz der Entwicklung vieler neuer Eingabege-
räte im Zuge der zweiten Welle der virtuellen Realität [3], hat sich noch kein Standard
für die Interaktion mit solchen Objekten in einer Mixed-Reality Umgebung hervorgetan.
Typische Ansätze, welche Controller und Gesten verwenden, bergen zahlreiche Nach-
teile. Probleme, wie der Gorilla-Arm-Effekt und fehlendes taktiles Feedback erschweren
eine gute interaktive Handhabung im 3D-Raum.

In dieser Masterarbeit wird der Einsatz von drei-dimensionalen Interaktionen mit
einem berührungsempfindlichen Tablet untersucht, um festzustellen, ob diese für die
Erkundung eines drei-dimensionalen Objekts in AR geeignet sind. Die Nutzung solcher
Interaktionsmöglichkeiten soll Nutzern den Umgang mit volumetrischen Daten in AR
durch räumliche und berührungsbasierte Eingaben erleichtern. Anwendern bietet sich
mit dieser hybriden Eingabeform eine intuitive Möglichkeit, um modifizierte volume-
trische Daten in der realen Umgebung der Benutzer zu visualisieren und diese durch
intuitiv gestaltete Aktionen zu manipulieren und sinnerfassend zu erkunden.

Zunächst wird die Grundlage für das Thema gelegt, indem verwandte Projekte vor-
gestellt werden. Anschließend werden unterschiedliche Eingabegeräte beschrieben, bevor
auf die Interaktionstechniken selbst eingegangen wird. Die gesammelten Informationen
werden für den Entwurf eines Konzepts für eine AR-basierten Prototypen verwendet,
welcher Interaktionen beruhend auf touch-basierten und räumlichen Gesten konzipiert
und die panelartige Form des Tablet für intuitive Inspektionsarten nutzt. Der Entwurf
dieser Applikation wird in einen entsprechenden Prototypen eingearbeitet, welcher im
Zuge einer qualitativen Nutzerstudie evaluiert wird.

Hierbei liegt das Augenmerk vor allem darauf, wie Anwender die Verwendung des
Tablets als Eingabegerät und die möglichen Aktionen, welche auf virtuelle Objekte ange-
wandt werden können, empfinden. Diese Studie zeigte, dass ein Tablet überwiegend als
gutes und intuitives Eingabegerät wahrgenommen wird. Zudem war die Verwendung von
touch-basierten und räumlichen Gesten verständlich. Bei der Untersuchung des Daten-
satzes konnten zwei-dimensionale Daten aus dem drei-dimensionalen Model gespeichert
werden. Alle Testpersonen stimmten zu, dass die Verwendung eines Markers für die
Kennzeichnung des Datenursprungs ausreichend ist, um eine Verbindung zwischen 2D
und 3D ziehen zu können und somit den Informationskontexts der zwei-dimensionalen
Daten zu begreifen.
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Chapter 1

Introduction

The traditional approach to visualise, examine, and compare two- and three-dimensional
data is to use a desktop computer system or a tablet. Such systems are characterised
by their monoscopic rendering capability, a limited field of view (FOV) and a lack of
head tracking. Furthermore, the presentation of data is restricted to the display size
and offers only a limited layout space. Even though it is a conventional hardware, it is
hard to use for manipulating, exploring, and understanding three-dimensional data.

Over time, technologies from the field of Mixed Reality (MR) [60], such as Virtual
Reality (VR) [77] or Augmented Reality (AR) [4], have made it possible to get a new
perspective on the visualisation of three-dimensional data. In combination with a Head
Mounted Display (HMD), AR allows an application to add virtual aspects, or even full
data sets, to the user’s real environment, which can then be perceived stereoscopically
and interacted with in real time.

Such three-dimensional data can be obtained by using an image generation method
such as Computer Tomography (CT) or Magnetic Resonance Imaging (MRI) [82]. The
result can be expressed as volumetric data, which is a set of samples representing spe-
cific values in three-dimensional locations [43]. As this kind of data contains a lot of
information, it is very extensive and therefore difficult to process [51]. Since the pro-
cessing of such data sets requires a lot of computing power, it is hard to display them in
an augmented environment, as the response time of the program is slowed down, which
undermines the real-time responsiveness of an AR program.

The handling of such data in AR is difficult. According to Mine [61], there are three
ways a user can interact with three-dimensional data: direct user interaction, physical
controls, and virtual controls. While direct user interactions, such as mid-air gestures,
may lead to fatigue [36] and confusion [24], virtual controls, may allow great flexibility
but lack haptic feedback and may complicate interaction [61]. Physical devices, such
as Hand Held Devices (HHD), on the other hand, may enhance the feeling of presence
while often lacking a natural mapping.

The choice of interaction possibility in AR is tough if two-dimensional data is to
be displayed in addition to three-dimensional data. This combination should allow the
user to explore monoscopic data in the spatial context of the stereoscopically rendered
data and get a better insight into the information presented. However, it is challenging
to create an intuitive and simple way for the user to deal with both formats.

1



1. Introduction 2

1.1 Research Questions
Based on this starting point, the following question has emerged:

“How to intuitively interact with and explore three-dimensional data in AR using a
spatially aware, touch-sensitive HHD.”

Since one can handle both, two- and three-dimensional data, when working with a
combination of AR and panel shaped HHD, the following meta question has also arisen:

“How to query and compare 2D data from 3D data while maintaining the connection
to the 3D context.”

In order to answer these questions, it is first necessary to examine which kind of
interaction possibilities are available and which projects have already been carried out
which deal with the investigation of 3D objects in a Mixed Reality Environment (MRE).
With the knowledge of the different existing techniques, a concept can be developed
and implemented in a prototypical implementation. A qualitative evaluation of this
application allows to detect which aspects of the concept are intuitive and if the chosen
approach was appropriate for the interaction between user and volumetric dataset.

1.2 Overview
Chapter 2 The Related Work chapter deals with the investigation of similar projects

and different input and output possibilities in an MRE. In addition, different
interaction techniques and tasks are explored to form a good basis for the following
concept chapter.

Chapter 3 The Concept chapter builds on the findings of chapter 2. With the help of
the comparisons and various design guidelines, a concept for an AR program is
designed which allows the user to interact with and explore volumetric data.

Chapter 4 The Implementation chapter describes how the previously established con-
cept is realised in the form of a prototypical application. The technologies used
are introduced before the data and implementation details are explained.

Chapter 5 The Evaluation chapter describes how the prototype is tested and evalu-
ated in the context of a preliminary qualitative user study. The findings are dis-
cussed and are intended to provide a first insight into the answers to the research
questions.

Chapter 6 The final Conclusion chapter summarises the previously drawn conclusions
on the focus of the master thesis before it closes with a list of possible extensions.

Appendix A The first appendix holds the list of acronyms used in this master thesis.
Appendix B The second appendix is a collection of all documents used for the evalu-

ation in chapter 5. It contains the information about data privacy, the user ques-
tionnaire, as well as the interview lead questions for the concluding conversation
with the study participants.



Chapter 2

Related Work

The first section 2.1 of this research summary covers the topic of closely related projects,
which use a touch-sensitive handheld device (HHD) in a mixed reality environment
(MRE) to manipulate a three-dimensional data set. Opposed to a conventional desktop
interaction, there is a broad variety of possibilities to interact with volumetric data in 3D
space. The choice of input device has a great influence on the design of the interaction
technique, so section 2.2 describes different input devices which can be used to handle
3D data sets. The following section 2.3 introduces the concept of virtual displays which
allow virtual output. Section 2.4 then discusses different types of interaction techniques
before closing the chapter with section 2.5, which covers interaction tasks.

2.1 Closely Related Work
This section focuses on projects which concentrate on the utilisation of HHDs when ma-
nipulating and exploring three-dimensional data in Augmented Reality (AR) or Virtual
Reality (VR). In the first subsection 2.1.1, publications with a focus on the utilisation
of HHD without computing power are covered, before addressing those, which take ad-
vantage of devices with computing powers, more specifically touch-sensitive tablets (see
subsection 2.1.2).

2.1.1 Physical Props as Handheld Devices
A pioneer project investigating the interaction of volumetric data in AR has been the
Studierstube project. This project utilises the Personal Interaction Panel (PIP) [80],
a combination of tracked panel and pen, to interact with three-dimensional graphics.
Multiple publications have been published developing and extending the Studierstube
[71, 72, 81, 86]. While the original Studierstube publication was only the introduction
of the idea for a multi-user AR environment [72], the idea was picked up and developed
further when Szalavari et al. introduced the PIP the following year [80]. They planned
interactions allowing the user to use the panel as a cutting plane or for holding tools
for further manipulations. In 1998, Szalavari et al. used see-through Head Mounted
Displays (HMDs) to present three-dimensional stereoscopic graphics to multiple users
simultaneously, which allows natural communication and interaction between co-located
users [81]. Additionally, the PIP was used for the direct interaction with presented 3D

3



2. Related Work 4

models (see figure 2.1). Incorporated layers allow the users to toggle the visibility of
different layers, which show different sets of aspects. Further, annotations can be added
to the model onto the 3D model using the PIP, and can be handled with an intuitive drag
and drop mechanisms in 3D. The system works with tracked mobile objects which allow
tangible interaction. While the PIP is a tangible manipulation tool, physical models
can also be used and passed between the users. The combination of HMD and PIP
allows intuitive three-dimensional viewing and manipulation which is superior to the
conventional screen-and-mouse based interaction when it comes to complex 3D models
[81].

Wohlfahrter et al. have extended the Studierstube project using interactive volume
exploration [86]. While the original PIP uses a see-through plastic palette and a pen,
which are both tracked, Wohlfarter et al. based their prototype on an extended version
suggested by Bimber et al. [10, 11]. A semi-reflective, semi-transparent foil was used on
the panel, which allows the system to calculate volume projection by using a focus or
eyepoint which has been reflected over the pad. This extension enables the 3D space to
be enlarged and also minimises the distortion of the projection for users other than the
one holding the PIP. The extended project allows the user to scale the rendered volume
using a slidebar, which is mapped onto the PIP, while the volume can also be grabbed
and rotated. The clipboard form of the PIP allows it to be used as a cutting plane (see
figure 2.2). When moving it through the model, cut parts are removed so the user can
see the internal structure of the data set. As the movement can be performed with the
non-dominant hand, the pen of the PIP can additionally be used to move the model.
Cutting planes can be frozen, hereby a copy of the clipping plane is stored and fixed to
the volume. Frozen planes can also be unfrozen to reset the model. Further, the system
allows the user to fast and easily extract arbitrary slices of the volume.

Figure 2.1: Positioning a clipping plane
with a tracked panel [71].

Figure 2.2: Positioning a clipping plane
with a tracked pen [86].

The PIP was a popular manipulation tool to be used for interaction with volumetric
data. Bornik et al. used it for computer-aided liver surgery planning in 2003 [15]. In
combination with a see-through HMD, stereoscopic visualisations could be analysed in
AR, using the PIP for input actions. The data consisted of surface or volumetric models
where the system automatically segmented Computer Tomography (CT) data sets as
input data. When moving the tracked pad through the model, it could be used as a
clipping plane. The original CT data is shown on the surface, while the model is clipped
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above the HHD and thus revealing the internal structure. The position of the panel
within the model can be saved in form of a snapshot which could be placed freely in the
user’s environment (see figure 2.3). Further, the pen of the PIP allows to take distance
measures on the model. This project has been extended the following year with more
focus on the modification of the volumetric data using the pen [16]. While the panel
was still used for immediate inspection, the pen was used to specify regions of interest
and to modify the selected segmentation (Vertex-Drag Tool, Free Deformation Tool).

Cassinelli and Ishikawa also introduced a device to interactively explore volumetric
data [22]. Other than the PIP, the control interface can be created with a combination
of a Plexiglas® or translucent paper, which is equipped with ARToolkit1 markers. This
handheld interface in combination with a passive projection screen allows the slicing of
the projected model into saggital, coronal, and horizontal slices as seen in figure 2.4. The
markers are used to track the position and orientation of the handheld publication, so
the corresponding slice can be calculated. Additional markers enable the user to switch
between modes which enable the taking of snapshots, or dragging of the position within
the virtual volume. The images are fixed, so the rotation of the publication with respect
to the volume model is not possible. The volume slicing display allows a workable space
as large as the user’s environment without the need of an HMD. Even though the screen
can be flexible, only straight slices can be displayed.

Figure 2.3: Creating snapshots from
cutting planes displaying CT data [15].

Figure 2.4: Slicing a 3D data set using
passive projection on a Plexiglas® [22].

2.1.2 Handheld Devices with Computing Power
Issartel et al. combined a touch-sensitive HHD with tangible tools which allows a direct,
natural, and full six degree of freedom (6-DOF) interaction [40]. The tangible objects are
a reference object to represent the data set, a stylus which can be used as a multi-purpose
exploration device (such as a "virtual blade") and a tablet. The tablet can be used as a
see-through window which allows tactile feedback. The data set is superimposed on the
reference object, so it rotates and translates along with the movement of the reference
object. The volume data can be sliced to visualise the structures within, using the planar

1http://www.hitl.washington.edu/artoolkit.html
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shape of the tablet to control a tangible virtual cutting plane. The display of the tablet
allows to show the progress of slicing real-time through the handheld window.

A combination of multi-touch wall display and a handheld device (iPod Touch2)
was used by Song et al. to allow the visual exploration of volume data [76]. A slicing
plane can be rendered in the virtual object and directly or remotely manipulated. The
direct rotation can be executed by rotating the HHD against the wall display while the
translation happens by using one finger to translate the slicer on X and Z plane or two
fingers to move it in Y direction. The idea is to give the user the feeling of holding a
physical slicer in hands. The visualisation can be rescaled using the conventional pinch
gesture. Song et al. made use of the 3D-tilt sensing and multi-touch capability on the
HHD to allow direct and efficient manipulation of a slicing plane within the visualisation.

Lopez et al. used a touch-sensitive tablet to allow as much engagement as possible
when exploring a 3D data set [52]. The idea is to combine a large immersive view of
the data sets and control this view with touch input on a touch-sensitive interface (see
figure 2.5). The input on the mobile device is combined with the control of Android’s
virtual rotation sensor. 3D navigation commands need to be initiated via touch and then
are controlled over a tablet which syncs the immersive and tablet views. This enables
the user to move around in the room and retrieve alternative views of the data which
allows an improved interaction experience. The user can explore two data sets through
tablet-based interaction.

Sereno et al. studied how collaboration can be enabled by combining an HMD with
a multi-touch device [73]. Hand tracking is used to apply ray casting, to indicate 3D
locations where the tablets 2D input is used to execute 3D manipulation. The combina-
tion enables view manipulations as well as the adding of text, images, and hand-drawn
sketches. Co-located collaborative exploration can be seen in figure 2.6.

Figure 2.5: Touch input manipulating
stereoscopically visualised data [52].

Figure 2.6: Sereno et al. collaboratively
manipulate data using touch input [73].

Surale et al. show how exploring a space using a multi-touch tablet in VR can be
implemented [78]. In their publication TabletInVR a 3D-tracked multi-touch tablet is
used in an immersive VR environment to support 3D solid modelling. It is depicted how
the touch input capability and physical shape can be utilised, as well as the benefits of

2https://www.apple.com/ipod-touch/
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metaphorical associations, and the natural compatibility with bare-hand mid-air input.
The prototype enabled users to create objects by flipping the tablet with the non-
dominant hand and choosing the respective object from a scrolling list. The placement
is executed by pointing the ray or using a mid-air pinch. Created objects can be selected
by using the tablet’s ray, executing a pinch gesture when piercing it with the tablet or
tapping on the face of the respective object (mid-air). Multiple objects can be selected
with a knuckle hand posture. Actions can be exited and objects deleted, using a "swipe-
in" movement. Text annotations are interactive objects which can be selected and re-
arranged. A metaphorical association in this prototype is the usage of the tablet as a
physical "knife" which can trim parts of objects (see figure 2.7a). Navigation can be
initiated with a five-finger touch on the touch interface, using the tablet as a view port.

Simulator and motion sickness is mitigated with a limited field of view (FOV). A
help feature can be activated via voice recognition which then displays a help video.
A user evaluation conducted that the gestures were "very intuitive and easy to follow".
Actions such as create, delete, and modify were also intuitive while they sometimes
unintentionally created objects. Transformations were found to be easy while rotations,
which were executed by rotating a hand on the touchscreen (see figure 2.7b), were chal-
lenging as the finger distance could be recognised as scaling. Some tasks also required to
flip the tablet with the non-dominant hand which caused discomfort and was perceived
to be cumbersome.

(a) Rotation (b) Slicing ("knife" gesture)

Figure 2.7: TabletInVR allows the user to interact with a virtual object using a touch-
sensitive tablet [78]. a) Rotations are executed by performing a twist gesture on the
display. b) The selected object can be clipped by handling the tablet as a "knife".

In contrast to Surale et al. [78], Luo et al. made use of a spatially tracked tablet
in combination of an HMD to interact with a model in AR [55]. The focus of this
publication lies on the spatial interaction with and exploration of volumetric data. They
allowed the interaction using three-dimensional input as well as touch input. To set the
initial position of the model in the user’s environment, they mapped it to the rotation
and translation of the tablet. Additionally, they used multiple buttons to execute actions
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such as starting a transformation mode, freezing the current cross-section (see figure
2.8a), or locking an axis for further examination. Overall, they offered solutions for
spatial manipulation, such as transforming and rescaling of the data set, exploration
using cutting planes (see figure 2.8b), as well as measuring actions. The prototype
further allows to capture slices, which could be viewed in a gallery mode or be annotated.
Luo et al. believe, that the user could benefit from the utilisation of three-dimensional
interaction when exploring and slicing volumetric data, in the sense of a better spatial
understanding as well as a reduced cognitive load.

(a) Freezing a slice

(b) Revisiting captured slices

Figure 2.8: Exploration of a three-dimensional data set in AR [55].

2.2 Input Devices
Traditionally, desktop computer systems are being used to render and analyse three-
dimensional data. This setup is characterised by a monoscopic view and the lack of
head-tracked rendering [48]. The use of immersive technologies makes it possible to
display spatially complex structures in a way that makes it easier for the user to analyse,
understand, and explore data [20]. As already described by Mayer et al. [59], there are
multiple input devices which are favourable for the interaction with three-dimensional
or volumetric data. Often it depends on the task at hand to find the best suited device.
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This section introduces various generic input devices which were designed to interact
with 3D data sets in subsection 2.2.1, before describing panels and tablets in detail in
subsection 2.2.2.

2.2.1 Generic Input Devices
Over the years multiple devices have been designed and developed to facilitate the
interaction with three-dimensional data. This subsection describes some of these devices.

A well-known approach is the cubic mouse, which has been developed by Fröhlich
and Plate in 2000 [33]. As can be seen in figure 2.9, this cube shaped box is crossed by
three perpendicular rods which represent the X-, Y-, and Z-axis respectively. Buttons
on the top allow additional control, while a 6-DOF tracking sensor is used to control
the position, as well as the orientation of a mapped virtual model. Additionally, each
rod moves a slicing plane along the corresponding axis. The simulations were displayed
using virtual environments such as a responsive workbench [46, 47], a CAVE [27] or a
large screen projection installation. The cubic mouse was tested analysing volumetric
data sets from Magnetic Resonance Imaging (MRI) or Computer Tomography (CT)
scans. The results showed the ease of use for users. The disadvantage of the design of
the cubic mouse, is the mapping of the device’s movements, which is often no longer
intuitive as soon as the device is rotated [33].

Figure 2.9: Cubic Mouse with tree perpendicular rods which can be used for the trans-
lation of cutting planes [33].

In a subsequent publication about projects in VR, Fröhlich et al. analysed multiple
input devices and conducted a study to show which are the most efficient in terms of
applicability with 3D interfaces [32]. The main requirements for these devices were that
they support at least 6-DOF and are operable in three dimensions. It was differentiated
between desktop devices such as the GlobeFish [31] and the GlobeMouse [31], and hand-
held devices such as the GlobePointer [32] and the SquareBone [39]. The GlobeFish,
combines the rotational characteristics of a 3-DOF trackball with elastic translation (see
figure 2.10), while the GlobeMouse combines this 3-DOF trackball with the commer-
cial SpaceMouse sensor which handles the translational input (see figure 2.12) [31]. The
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SpaceMouse is an input device developed by 3DConnexion for 3D navigation (6-DOF)
in computer-aided design (CAD) programs 3.

The GlobePointer is based on the idea of the GlobeFish, but designed as a handheld
device as can be seen in figure 2.11 [32]. The HHD measures the hand orientation
using a 2-DOF gyroscopic sensor, while two joysticks (1-DOF and 3-DOF) are used to
manipulate the depth translation and the rotation of the selected object. The two-4-six
device utilises a touchpad, a gyro- and elastic sensor for translations, while the arcball
approach [74] is used to measure rotations. The SquareBone has a handheld design in
form of two 6-DOF SpaceMouse sensors and a tracking sensor were designed which
could be manipulated with the fingertips of both hands (figure 2.13) [39]. An extended
user study was conducted comparing these devices and the cubic mouse [33] in tasks
requiring navigation as well as object manipulation [32]. While the cubic mouse was
preferred by novice users, the SquareBone performed best. It was stated, that specific
applications often need specific device requirements and that it might be hard to find a
universal 3D input device which works for all applications.

Figure 2.10: The GlobeFish is a 6-
DOF controller with a 3D trackball
[31].

Figure 2.11: GlobePointer which is
based on the GlobeFish [32].

The roller mouse was developed in 1993 by Venolia et al. to arrange 3D objects in
a scene [83]. It is based on a standard 2D mouse but includes two wheels on the front,
as can be seen in figure 2.14. The mouse is used to control the tip of a cone shaped 3D
cursor which changes its orientation as it moves while the body gets dragged behind
("tail-dragging"). Tail-dragging enables the translation and rotation of 3D objects (yaw
and pitch orientations). An intuitive model of magnetic attraction with a similar snap-
top behaviour such as "gravity fields" can be used to help align objects [7, 9]. The roller
mouse enables the user to move the cone courser in three dimensions simultaneously.

Another alternative to conventional input devices is Bornik’s Eye of Ra which can
be used in combination with a tablet PC [14]. It holds a stylus tip, which allows direct
2D interaction on the tablet, while additional buttons and a scroll wheel are used for 3D
interaction (see figure 2.15). The Eye of Ra allows the user to make two-dimensional ma-
nipulations with a focus on high precision, and three-dimensional manipulations which

3https://3dconnexion.com/de/spacemouse/
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Figure 2.12: The GlobeMouse is a
tracked 3D ball incorporated on a 3D
translation controller [31].

Figure 2.13: The SquareBone is a
two-handed device, which consists of
two 6-DOF SpaceMouse devices [39].

allow high speed input. The device can be used with a power or a precision grasp,
which allow the user to concentrate on different tasks. It was specifically developed
as a template shaping tool for deformations, segmentation, labelling data, and taking
measurements. Tracking targets on the device allow 6-DOF tracking.

In contrast to the previous publications, Gallo et al. took advantage of the already ex-
isting Nintendo Wii remote controller 4 [34]. This HHD was used as a three-dimensional
user interface for manipulation and pointing tasks when interacting with volumetric
medical data in a semi-immersive virtual environment.

Figure 2.14: The roller mouse can be
used in three dimensions [83].

Figure 2.15: Eye of Ra can switch
between 2D and 3D interaction [14].

4https://www.nintendo.co.uk/Wii/Accessories/Accessories-Wii-Nintendo-UK-626430.html
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Device name Input DOF Citation
Cubic mouse Button input, translational input from

three perpendicular rods, position and ori-
entation input via tracking sensors

6-DOF [33]

Globe Fish Elastic translational input and rotational
input via a 3-DOF trackball

6-DOF [31]

Globe Pointer 2-DOF gyroscopic sensor for translation
input, 1-DOF joystick for depth transla-
tion, and a 3-DOF joystick for rotational
input

6-DOF [32]

SquareBone 2 rotational and 2 translational input sen-
sors

12-DOF [39]

Globe Mouse 3-DOF rotational input via a trackball
and translational input via an elastical 3D
translation controller

6-DOF [31]

two-4-six The touch input on a touchpad is used
for rotations, while a gyrosensor in combi-
nation with an elastic sensor are used for
translations

6-DOF [32]

Roller mouse Mouse ball encoder for transitional input
and two wheel inputs

4-DOF [83]

Eye of Ra Buttons input, spatial tracking, and input
via an integrated stylus

6-DOF [14]

Nintendo Wii re-
mote controller

Position and orientation input via infrared
tracking

6-DOF [34]

Table 2.1: Generic input devices overview.

2.2.2 Panels and Tablets
In contrast to the input devices previously presented, this subsection introduces panel
shaped handheld units, which can be used to display data, and how they can be utilised
in a three-dimensional application.

Angus et al. made use of a handheld flat panel or physical clipboard in combination
with a stylus, which were both registered with position trackers in the virtual environ-
ment [2]. The Personal Digital Assistant (PDA) allows a 3D interaction metaphor with
2D user interface tool kits. Tools aligned to the panel are within easy reach and do not
clutter the users FOV, while the panel allows the system to embed 2D interactions into
the users 3D environment. The panel can be used to display menu options, with the
menu attached to the panel and not floating in the environment like other VR menus.
The advantages of this set up are the high fidelity, as well as the natural feedback and
the option to put the prop away to clean up the FOV as the virtual elements are at-
tached to the clipboard. Although the panel allows to embed virtual elements in the
users physical environment, it also restricts the size of the display to the physical borders
of the handheld panel.
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Another two-handed interface was introduced by Szalavari et al. [80], the previously
mentioned Personal Interaction Panel (PIP). This panel allows easy-to-understand ma-
nipulation tasks in augmented and virtual environments. Due to the constraints of the
technology at the time of publication and demanding hardware such as LCD shutter
glasses and pressure-sensitive displays, it was decided to set up the PIP using simple
hardware. This system can be implemented using a plain panel and pen along with a
see-through HMD. Tracking markers are placed on pen and pad as seen in figure 2.16a,
as the hardware itself does not hold any computing power or sensors. The big advantage
of this setup is the passive haptic tactile feedback which enriches the interaction. It is
designed for the user to hold the panel in the non-dominant hand while the dominant
hand can use the pen for basic object manipulation tasks such as selection, transforma-
tion, zooming, layering, or browsing remote environments. Further, it enables the user
to use the panel as a tangible cutting plane, slicing the model (see figure 2.16c), and
creating snapshots. Further interaction possibilities can be chosen in a menu displayed
on the panel (see figure 2.16b). Users who tested the prototype did not report any
problems with fatigue and found the user interface natural to interact with.

(a) Setup (b) Tool menu (c) Slicing

Figure 2.16: Personal Interaction Panel (PIP) introduced by Szalavari et al. in 1997 [80]
a) The PIP consists of a tracked panel and pen which are augmented using an HMD. b)
The PIP can be used to hold interaction tools, c) or to slice virtual objects and display
internal structures.

The next step from so called "dumb panels", which do not hold any computation
power such as the PIP, to the modern touch-sensitive tablet, was the utilisation of
handheld monitors. Fitzmaurice first made use of spatially aware palmtop computers
to utilise physical objects as anchors for information when creating a prototype named
Chameleon [29]. Such handheld monitors situated information in a physical context in
form of an information space, which could hold multimedia (text, video, graphics, audio)
[30]. The additional information about the organisation of space could also improve the
users orientation. Wellner then introduced the term computer-augmented environment,
which describes the merging of electronic systems into the physical world instead of
replacing them [85].

Amselem and Rekimoto researched and extended Fitzmaurice’s idea of a handheld
display, which is aware of its position [30] for the interaction with the virtual world [1,
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68]. Amselem captured the position and orientation of an HHD using a 6-DOF tracking
device and mapped it one-to-one to the viewpoint in space [1]. This tracking enabled
the encoding of "real" and "information" space which helps to avoid an overflow of infor-
mation and associate electronic information with physical objects. In 1995, Rekimoto
and Nagao created the NaviCam, a device which could detect colour code IDs placed in
the environment and display related information [68]. It combines ID-awareness with a
portable video-see-through display, which uses information from the user’s environment
as implicit input. Such Graphic User Interfaces (GUI) on HHD allow to reduce the
cognitive overload even though they do not reduce the volume of operation itself.

Workbenches used to be a suitable alternative to HMDs, as they had a higher resolu-
tion and were a cost-effective alternative to CAVEs which are very expensive. Therefore
and due to the ability to display data in real-world scale, it is suitable for medical VR
applications [51]. Schmalstieg et al. combined a workbench-like setting with transparent
props in form of a tracked hand-held pen and a pad [70], which are related to the PIP
[80]. The pad is usable as a palette which can carry controls and tools while also func-
tioning as a window-like see-through surface. Interactions took the form of active object
manipulations or the creation of snapshots of the real 3D scene. The pad works as a
"window" which can display the 3D graphics and therefore represents an embedding of
2D in 3D, while allowing the manipulation of seen objects. The selection of such objects
is solved with a fish net selection, which works by intersecting desired objects with the
pad. Replicas of selected objects appear on the panel, ready to be changed.

Device name Display Input Citation
PDA Tracked panel,

no computing power
Virtual finger or stylus,
tracked

[2]

PIP Tracked panel,
no computing power

Tracked pen [80]

Chameleon Palmtop computer Gestures and one button [29]
Hand-held dis-
play

LCD display Orientation and position
with a 6-DOF tracker

[1]

NaviCam Portable computer Video stream, gestures,
and one button

[68]

Transparent
props

Tracked panel,
no computing power

Tracked pen [70]

Table 2.2: Panels and tablets overview.

2.3 Virtual Displays

While physical devices are restricted to their size [2], virtual displays allow to extend
their functionality of presenting information to the user.

Virtual displays are windows which are rendered in AR or VR to show data. They
can be stand alone or enlarge an existing screen. Normand and McGuffin explored the
idea to enlarge the screen of a mobile device with the help of AR, thus creating a
Virtually Extended Screen-Aligned Display (VESAD) [62]. They aligned virtual surfaces
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co-planar with a smartphone and used the handheld device for interaction options (see
figure 2.17). The windows are mapped to the device so they stay aligned when the device
is moved. Interaction is possible through a quick rotation of the device that switched
information, as well as through "slide-and-hand", where the information displayed on
the screen is detached and displayed mid-air with AR. It was compared how the users
fare when using the phone as input but VESAD as output, the phone and VESAD as
output but mid-air gestures as input, and only the phone. This comparison showed that
using AR to expand the output window, but with the ability to use the mobile device
for input, was significantly faster and preferred over the other two techniques.

Another publication focusing on embedded AR visualisations was contributed by
Reipschläger et al. [66]. They proposed to display data in AR as an extension of a
large interactive display to allow further exploration and a different view on the user’s
design space. Similar to the VESAD, these embedded AR visualisations can extend
directly from the physical display. To avoid difficulties in reading the original data due
to overloaded and complex additional information displayed in AR, they proposed to
limit and sensibly select the external data.

Figure 2.17: VESAD maps virtual windows to the user’s mobile device [62].

In 2020, Biener et al. investigated in a publication how to extend 2D displays into the
third dimension [6]. They investigated the combination of an HMD with touch-sensitive
laptop or tablet to explore the joint interaction space in VR. While virtual windows are
often spatially arranged in scaffolding geometry (e.g. spheres or cylinders), they suggest
a depth layering to allow the usage of this technique in a constrained environment.
Is is suggested to use the touchscreen of the tablet for interacting with and switching
between the virtual windows. An alternative could be a combination of gaze tracking
and touch gesture using a temporal threshold to avoid unwanted interactions (Midas
touch problem [41]). An executed design parameter evaluation found that the gaze and
touch combination outperforms the bi-manual method by approximately 30% in terms of
speed, while also achieving higher ratings on the System Usability Scale (SUS [18]). The
interaction with a selected screen should either be executed by using the touchscreen as
indirect input device or by aligning the virtual display with the physical touchscreen.
The switching between screens could be achieved by using a two-finger swipe gesture
[6].
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The behaviour of users when interacting with virtual displays using a smartphone
was investigated by Ren et al. in the context of a formative interview [69]. Many pos-
sibilities on how to manipulate virtual windows in AR using a touch-sensitive 6-DOF
device have emerged. Ren et al. found that users consider view management using a
smartphone as more efficient and accurate compared to hand gestures. Touch, posture,
position, and movement were used as input methods on the touch interface. A pull ges-
ture with two to three fingers or the side of a palm was used to create a windows aligned
to the smartphone, while a throwing gesture was utilised to create a view next to the
user. Further examples for envisioned smartphone postures can be seen in the following
figure 2.18. They stated how it was important for the user to "avoid conflicts with the
original function" [69].

Figure 2.18: The formative interview conducted by Ren et al. concluded following ex-
amples [69] a) The smartphone can be shaken to open a window. b) An application can
be opened in AR when pressing the app icon while executing a shake gesture. c) If the
user holds the edge of the smartphone when it collides with the AR window, the window
is to be closed.

2.4 Interaction Techniques
Bowman defines interaction techniques as methods which allow the user to perform a
task using a User Interface (UI) [17]. Such techniques vary from haptic actions, such as
the click of a mouse button, to less tangible actions, such as mid-air gestures. The UI is
influenced by the type of input device used. This section first introduces the common
interaction techniques mid-air gestures (subsection 2.4.1) and touch input (subsection
2.4.2), before summarising best practices and design insights in subsection 2.4.3.

2.4.1 Mid-Air Gestures
Mid-air interaction is a fast-changing area with many dimensions, where the user can
make use of gestures, postures, and movements to interact with a virtual data set [45].
This touchless interaction technique was first mentioned by Sutherland, when describing
the ultimate display [79]. Executed was the idea by Bolt in the Put-that-there project,
which enabled the user to move objects with a combination of voice command and
pointing gestures [12]. While 3D mid-air interaction allows intuitive, three-dimensional
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interaction, gesture interpretation is unreliable and leads to low performances [23]. Ad-
ditionally, studies report interacting mid-air causes fatigue, also known as gorilla-arm-
effect [13, 36, 57], while the lack of tactile feedback leads to a greater number of errors
and sometimes confusion [24].

2.4.2 Touch and Spatial Input
The concept of touch input was introduced in the context of the first touch-sensitive
display by Johnson [42]. The touch wires integrated in the device allow the surface to
be sensitive to the touch of a finger. As a touch-sensitive device often offers a hard
surface, it gives users a tactile feedback. Spatial input, on the other hand, uses 3D input
technologies in free space [37].

Zambramski compared the touch input to the use of conventional tools such as a
mouse and pen in a line tracing task [90]. This comparison shows that touch performs
better in terms of speed, but does not provide precise contour tracking and is therefore
error-prone in comparison as far as replication tasks are concerned.

Lee et al. investigated the usage of a smartphone for the interaction in an MRE
[49]. The multi-touch input of a smartphone offers a precise, tactile, immersive, and
user-friendly option to manipulate three-dimensional objects. A preliminary user study
revealed that this alternative touch input outperforms the conventional interface which
combines mid-air gestures and gaze in completion time for a multiple manipulation
tasks, such as the placement and transformation of objects, and camera control.

In a 2013 publication, Bruder et al. compared the usage of 2D touch gestures on
a touch-sensitive tabletop surface to 3D mid-air interaction [19]. They concluded that
touch gestures are most efficient when the object being interacted with is close to the
surface. In case of the object being further away than 10 cm from the tabletop display,
3D selection outperforms 2D touch gestures.

When comparing touch input and spatial interaction with 3D data visualisation on
a mobile device, Büschel et al. found that three-dimensional interactions alone are more
efficient than touch input alone [21]. This comparison of multi-touch and movement
had a focus on navigation, comparison, understanding, and memorisation. The spatial
interaction was conducted with a tracked tablet and it was found that this method
was preferred over touch input as it is more intuitive and dynamic when positioning an
object.

In a further study which also compared multi-touch input with device movement,
Marzo et al. found that a combination of multi-touch and spatial input works best
when positioning and rotating a virtual object [58]. They looked into the manipulation
of an object using touch input, device positioning, and a combination of both. Their
evaluation showed, that a mixture of movement and multi-touch is superior. This hybrid
of spatial and touch input achieves the lowest task completion time and reduces the
amount of rotations needed when manipulating a data set. Further, it was found, that
small rotations of the virtual object are best done using movement, while touch input
is more efficient for large rotations.

Wurm et al. showed how the usage of tablets in a VR application can increase the
interaction possibilities as it provides useful input and output options [87]. It enables
high-precision selection, clickable interactions, and also provides a menu interface. The



2. Related Work 18

precision provided by the tablet is further more precise than the commonly used wand
interface.

Cohe et al. conducted a user study with users with little to no experience in the
investigated domain to analyse how they interact with 3D objects using touch gestures
[26]. They found that rotation gestures tend to be curved (72,54%), while translation
gestures are mostly straight (98,92%). The number of fingers used is not considered to
be important, and sometimes more than the minimal number of fingers are used. The
experiment showed that users are more confident when they interact with a 3D object
using a touchscreen over the use of a mouse. This may be based on the fact that users
feel more free to apply strategies using touch gestures over grab gestures which are
typical for mouse-based interactions.

In a publication comparing object selection in combination with interaction tech-
niques scrolling, tilting, and moving, Boring et al. describe the respective weaknesses
of these techniques [13]. A mobile phone was used to continuously control a pointer on
a remote display by means of these techniques. Scrolling, was implemented by pushing
the phone’s joystick or arrow keys into the respective surface which directs the cur-
sor at a constant speed which allows a high selection time for distant targets. Tilting,
was realised by mapping the acceleration of the cursor to the tilt of the device, while
moving allowed the direct mapping between phone movement and pointer movement.
The latter two allow a faster selection time as there is no constant speed set for the
movement, which also leads to higher error rates. These error rates can be reduced by
introducing a "snapping" behaviour. In addition, tilting and moving may also lead to
fatigue (gorilla-arm-effect), e.g. in case the user moves the whole arm when using the
move technique. Despite its limited movement options (linear and diagonal), the scroll
technique was found to be the easiest to use.

2.4.3 Best Practices
Considering the previous sections, a combination of touch input and physical movements
are a reasonable choice for handling three-dimensional objects at close range. Tablets are
best suited for such tasks, as they offer useful input and output options in addition to
touch and spatial input [49, 58, 87]. The following points are summarised best practices
which can be drawn from the previous subsection 2.4.2:

• When working with interfaces in a VR application, touch interfaces should be
used, as they offer easy to use menus and higher precision input compared to
traditional VR interfaces [87].

• For placement and transformation tasks, touch input should be preferred to mid-
air gestures, as they are perceived as more precise, tactile, and user-friendly [49].

• When working with touch-sensitive tabletops, touch input is most effective and
should be used to interact with virtual objects. If the object is further from the
screen than 10 cm, mid-air gestures are preferable for object selection [19].

• For navigation and comparison tasks, spatial input is preferable to only using
touch input, as it is more supportive and comfortable [21].

• For object manipulation, a combination of spatial input and touch input should
be used. A hybrid input system allows a lower task completion time and helps to
reduce device movements compared to spatial input or touch input alone [58].



2. Related Work 19

• When controlling an object on a remote display with an HHD, it is best to map
the tilt gesture or general movement of the unit. This allows for quick movement,
although a latching behaviour should be used to avoid high error rates [13].

• The trajectory for rotational gestures should be designed curved, while translations
should be straight. A conducted user study showed that this is the most common
behaviour of users envisioning such gestures [26].

• The number of fingers used for touch input should not be fixed. The user should
be allowed to use more fingers than required. [26].

In addition to these summarised best practices, the following design suggestions have
been proposed in other publications.

Following their previous publication regarding the usage of a touch-sensitive tablet
to explore a 3D data set (see subsection 2.1.2), Lopez et al. set up a design space with
multiple guidelines to improve the user’s engagement when using a touch-sensitive HHD
and a combination of monoscopic and stereoscopic displayed data [53].

• A 7-DOF navigation should be supported, which includes 3D translation, 3D ro-
tation, and uniform scaling.

• A consistent combination of data exploration techniques should be enabled by
navigation interactions.

• Information should be displayed actively on an HHD which also allows interaction
input. Otherwise, the device could be used for input only, so that it can be used
without eye contact and thus no displayed information is needed.

• The user should be allowed to physically move within the stereoscopic environment
to allow different perspectives.

• The tracking should be held simple.
• Touch input should be precise and well-controlled.
• Physically holding a touch-sensitive mobile device should be minimised as it leads

to fatigue.
In an observational study with expert users Lopez et al. tested a prototype design
with regard for these guidelines. No participants reported problems or difficulties when
switching between the stereoscopic display using an HMD and a monoscopic display in
form of a tablet [53].

Further design insights have been defined by Hubenschmid et al. in the course of
a publication, analysing the use of spatially-aware tablets in an AR environment for
multi-modal interaction with 3D visualisations [38]. The usage of an HMD allows the
user an increased stereoscopic perception along with egocentric navigation, which allows
a better understanding of abstract 3D visualisations (see figure 2.19). They argued,
that mid-air gestures are tiring, unreliable, and inaccurate, while touch interactions are
less exhausting and allow a familiar two-dimensional input. This hybrid user interface,
consisting of a Mixed Reality (MR) HMD in combination with a traditional input device,
such as a tablet, allows interaction without visual contact with the input menu (eyes-free
interaction). This enables the user to observe the immediate effect of executed actions in
the visualisation. When interacting with a data set, the selected part is highlighted while
the tablet has a matching background colour scheme. The selection can be changed with
the user’s head-gaze, using a threshold of three seconds to mitigate the Midas touch
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problem [41]. The eyes-free interaction is implemented by dividing the tablet menu into
four large areas which can be distinguished without eye contact, while taken actions are
mirrored in a head-up display (HUD). When the HHD is held vertically, the tablet lens
mode is activated. This allows interaction with a 2D visualisation view of the targeted
AR object, while the rotation of the object can be synchronised with the rotation of
the tablet. Subtle proxemic interactions are implemented, which allow icons and texts
to rotate towards the user while small text is only shown when the user is close enough
to read it.

Figure 2.19: STREAM allows the user to use a tablet for a fluid combination of 2D and
3D data [38].

The user study conducted revealed that the tablet was uncomfortable to hold in
certain positions, e.g. when rotated 90°, although all participants used this spatial trigger
to switch to the tablet view. When tangibly manipulating objects, the participants feared
to drop the tablet. The results found in this evaluation lead Hubenschmid et al. to define
the following design insights [38]:

• Use spatial triggers as input.
• Avoid too much unnecessary eye contact with the screen of the HHD (eyes-free

manner).
• Use AR HUD to show available voice commands.
• Employ a loading indicator in AR via head-gaze when selecting an object.
• When using head-gaze, the user should be provided with an action to skip dwell

time.
• 3D object alignment should be supported in MR environments.
A formative study by Surale et al. investigates how users envision the usage of a

touch-sensitive tablet in a VR environment [78]. The study found, that the creation
of an object is expected to happen by drawing on a tablet and extruding or pushing
a menu button, while the selection of an object should be executed with a grab or
tap on the tablet. Transformations and rotations would be expected to happen when
rotating and moving the hand while a pinch to zoom seems most intuitive for rescaling
objects. The modification by slicing is expected to happen with the use of menu buttons
while a hand or tablet can execute the slicing motion through the virtual object in the
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user’s environment. These findings have been incorporated in their prototype, which is
described in subsection 2.1.2.

2.5 Interaction Tasks
Bowman separated common tasks in VE applications into four categories: travel, selec-
tion, manipulation, and system control [17]. As the idea of this project is to focus on
selection (subsection 2.5.1) and manipulation (subsection 2.5.2), these are the categories
covered in this section.

2.5.1 Selection
Selection is the task to specify one or more virtual objects for any purpose [17]. De-
pending on the selection technique, the user may face different challenges. For some
techniques this could be the limited reach of the user, for others the choice of small
or distant objects [17, 50]. Additionally, it can be tricky to select objects in a virtual
environment if the environment is cluttered or the object is occluded [63, 88]. With
direct selection techniques, the position of the object must be known, which is not the
case with indirect techniques, where the user can select from a list of objects for which
the name of the object must be known [17, 61]. This subsection introduces different
selection techniques and describes their advantages and drawbacks.

Besançon et al. investigated spatial selection techniques for three-dimensional data
sets using touch input and introduced an extended taxonomy focusing on user control
[5]. Among other things, the selection metaphor, the target selection type, selection
shape creation and selection tool control were compared. The target selection type was
previously differentiated in object selection and region of interest (ROI) based selection,
where Besançon et al. now differentiated between single-object and multiple-object se-
lection. They highlighted that "different tasks and environments call for different levels
of control over the shape creation". While ray casting is a good technique for context-
dependent selection, it would not perform well for particle data selection.

The fundamental idea of ray casting has been first introduced in the Put-That-There
publication of Richard A. Bolt, where speech recognition was combined with position
sensing, to interact with a graphic interface [12]. The system worked with magnetic field
measurements using a pair of spatial sensing cubes attached to the user’s pointing arm.
This allowed the user to refer to any object or location with a pointing gesture after
initiating the action with signal words such as "that" and "there". In 1993 ray casting was
again picked up in the form of a ray-firing selection mechanism by Liang et al. [50]. The
beam has been attached to the X-axis of a bat-shaped virtual object that can be moved
by the user to make a selection. This works well in most situations, but when aiming
is difficult due to the size of the object or a long distance between pointer and target.
Based on this implementation, Hinckley et al. suggested the ray casting metaphor which
allows the user to perform a selection by casting a ray or cone [37]. Mine also refers
to ray casting when describing at-a-distance selection, though referring to is as laser
beams or spotlights [61]. At-a-distance selection is used when the object is outside of
the immediate reach of the user. Mine also marks the selection by the intersection of
the ray with a virtual object (see figure 2.20).
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Extending the ray casting form described before [37, 50], Pierce et al. introduced
multiple selection techniques building on the selection using a beam which is aligned
to the users hand [65]. All techniques work by calculating the ray from the user’s eye-
point over an indicated position in space. The Framing Hands technique, allows the
user to form two corners with the hands and uses the middle of the formed frame as a
reference point to draw the selection ray starting from the user’s eye point (see figure
2.21). The Head Crusher, which is similar to the Framing Hands, indicates the reference
point by calculating the trajectory through a point in between the user’s forefinger and
thumb. The Sticky Finger technique on the other hand uses the position of the user’s
index finger to draw a ray starting from the user’s eye point. At last, the Lifting Palm
technique, uses the position of the outstretched hand and positioning of the palm to
cast a ray. The problem using these techniques is the choice which eye’s image is used
as they display slightly different images. A further problem is the arm fatigue (gorilla-
arm-effect), which arises from constantly lifting the hands to the eye-level, though the
selection time is reduced in comparison to pointing.

Figure 2.20: Ray casting using a
pointing gesture [61].

Figure 2.21: The Framing Hands
Technique [65].

The flexible pointer was introduced by Olwal and Feiner, and extends the existing ray
casting selection concepts [63]. Other than previously introduced ray casting techniques,
the virtual flexible pointer allows user to select fully or partially occluded objects using
a curved arrow as seen in figure 2.22. Olwal et al. noticed that when people point, they
usually describe a curved gesture in combination with a movement. Building on this
observation, the manipulation of the flexible pointer was based on the hand orientation
for the amount of curvature, and the hand position for the length of the selection arrow.
This concept expands the selectable objects for the user while making it easier to point
on certain objects. The design of the pointer helps to avoid obstruction of view while
reducing the need for disambiguation.

The iSith metaphor was introduced by Wyss et al. and is also based on a ray cast
selection [88]. It enables the movement of two ray pointers, each of which is associated
with the movement of a hand. This bi-manual concept allows direct object selection
and manipulation while reducing complexity and still granting 6-DOF. The intersection
point of the two rays is used to select the virtual objects and provides an easy-to-learn
interaction. Such as the previously introduced flexible pointer, it allows the user to grab
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partially or totally occluded virtual objects as the intersection of the two rays is essential
for the selection and not the first collision with an object (see figure 2.23). The bi-manual
concept allows symmetrical and asymmetrical movement while still being limited in the
precision of the movement.

Figure 2.22: Flexible Pointer [63].
Figure 2.23: iSith ray cast selection
[88].

In 2011 Kopper et al. introduced a sphere-casting refinement technique (SQUAD)
using a four-item menu (QUAD-menu) [44]. This technique gradually reduces the choice
of selectable objects until the intended object can be selected without the user having
to specify. While ray casting amplifies small hand movements which lead to less precise
selections due to natural hand tremor and tracker jitter, the progressive refinement
suggested is more accurate. Although these techniques require only one precise action,
SQUAD has proven to be very accurate and allows for faster selection of small objects.

2.5.2 Manipulation
When examining or exploring an object, the user’s goal is to take a closer look as details
which may even be hidden. This can be achieved by removing parts of the surface or by
using different filters to make these details visible. This subsection introduces several of
these techniques.

One of the first publications to investigate the slicing of digital objects, was Osborn
and Agogino in 1992 [64]. The pool of water metaphor was used to create an interactive
and intuitive interface which allowed the direct manipulation of three-dimensional ob-
jects. The visualisation was placed within a pool and sliced by the surface of the water
within the pool, which represented a cutting plane. The user could change the position
of the plate, with the depth of the water pool corresponding to the depth of the cutting
plane.

Bier et al. introduced a see-through interface with the concept of tools, which can be
made visible on demand (the so called ToolGlass™ widgets) [8]. These contain the visual
Magic Lens™ filters, which can be used to reveal hidden information. This filter allows
a new style of interaction by providing context-dependent feedback and the ability to
view details alongside context. The lens modifies the image in the viewing region and
can cull away objects in the local region, while leaving the rest of the view intact. A
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further lens is the magnifier which allows the user to rescale the model. A combination of
magnifier lens and wireframe lens is displayed in figure 2.24. This see-through interface
offers a new design space allowing good graphical feedback while reducing task steps.

Building on the previously introduced Magic Lens™ concept, Viega et al. extended
the filter into three dimensions by introducing the visualisation techniques flat lenses in
3D and volumetric lenses [84]. The flat lenses in 3D allow to preview changes in a limited
region, with the visible area being the lens frustum which removes the intersecting
surfaces. Flat lenses can also be composed by overlapping them.

Volumetric lenses make it possible to restrict the effect of a lens to a limited volume.
This allows to cull away large parts of 3D data sets while still showing the context. An
example for the usage of the volumetric lens is X Ray Vision, which allows to remove
parts of the object within the defined frustum to reveal what’s inside as seen in figure
2.25.

Figure 2.24: 3D wireframe lens and
magnifier [8].

Figure 2.25: X Ray volumetric lens
using a defined frustum [84].



Chapter 3

Concept and Design

This chapter deals with the conceptual design of the prototype and serves as a basis
for its implementation. First requirements are introduced, which form the basis of the
design (see section 3.1), before the overall architecture (see section 3.2), and use cases
(see section 3.3) are covered. These are followed by the topic of volumetric data (see
section 3.4), the explanation of different interaction techniques (see section 3.5), and
how these can be realised in a User Interface (UI) design (see section 3.6).

3.1 Requirements
The prototype is designed to visualise volumetric data in three-dimensional space with
an emphasis on the manipulation of the presented data using a touch-sensitive handheld
tablet. These interactions should support the exploration and intuitive handling of the
data set. Following functions need to be fulfilled by the application:

• Loading both volumetric and iso-surface models must be possible. The latter can
hereby be displayed in a three-dimensional space.

• The prototype must offer a selection method to choose a data set visible in a
three-dimensional space.

• The prototype must offer multiple methods of exploration. These allow the user
to clip away parts of the presented data set and take snapshots.

• The prototype must support the mapping of the displayed three-dimensional
model to the input device, which allows the user to move and rotate the data
set using a handheld device (HHD).

• The system must be designed for minimal direct viewing of the tablet screen,
maximising eyes-free interaction.

• The prototype must enable the computation of the intersection from the given
volumetric data set and the position of the cutting slice within the associated 3D
model.

A volumetric data set and a surface data set need to be provided as input for the
prototype. The later is rendered in 3D, and since it has no internal structures that can
be exposed, the volumetric data set is used to calculate the intersection between the
section plane and the model. Further input can be generated through the user with

25
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touch and spatial gestures. The output should be visible through changes in the user’s
environment and on the model.

3.1.1 Non-Goals
Non-goals were defined in order to specify the scope of the concept and consequently
the to be developed prototype more precisely.

• Remote Connection
The focus of this prototype does not lie on the creation of a complex network. Its
sole purpose is co-located operation only.

• Connection to external display
Within the scope of the X-PRO project, an external display is often involved in
the development and usage of prototypes. In this specific project, this will not be
the case at this stage. For example, snapshots will not be viewed on an external
display.

• Multiple Models
The prototype is designed for the use of one model at a time, and not for the
simultaneous use of several models.

3.2 Architecture

Figure 3.1: Setup as depicted by
Mayer et al. [59].

As has become evident in the previous chapter 2, one
reasonable choice for this prototype setup is the us-
age of a Head Mounted Display (HMD) in combination
with a touch-sensitive handheld tablet as illustrated in
figure 3.1. Here a dataset (depicted as a blue skull) is
displayed using an HMD and the HHD is used to inter-
act with this dataset. Similar compositions have been
implemented by [21, 38, 40, 52, 53, 73, 78].

These setup requirements have been defined based
on multiple design insights proposed by Lopez et al.
concerning mobile touch systems [53]. A tablet-sized
mobile device is favoured as it enables the user to move
around the space while supporting 7-degrees of free-
dom (DOF) navigation (3-DOF translation, 3-DOF ro-
tation, 1-DOF uniform scaling). The mobile display can
be used to actively display content, but it can also be
used without direct eye contact to the touch interface
(eyes-free), to avoid the gorilla-arm-effect [13, 36, 57].

The HHD allows the system to exploit two-handed asymmetric interaction as Guiard has
proposed [35]. These favoured asymmetric gestures of the user are executed when one
hand is used to hold the device while the other executed touch gestures. The designed
gestures are explained in section 3.5 in detail.
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The software system components are structured as follows:
User Interface The UI is the visual component and shows the display interaction

menu, intersection plane and taken snapshots.
Interaction Logic The interaction logic processes the user input through spatial or

touch input, calculates the intersection plane in the model data and enables using
the HMD in the virtual space.

Data Input The data input is read from the volumetric data set and used to calculate
the section plane. Other inputs are the user’s touch and spatial inputs.

Network Manager The network manager is used for the connection and synchronisa-
tion between the HMD view and the tablet display, and handles mode and input
changes.

The interconnection between these system components can be depicted as seen in
the following figure 3.2.

Figure 3.2: Interaction of the components, with arrows indicating dependency.

3.3 Use Cases
The system is expected to allow the user to manipulate and explore a virtual data set.
Hereby, the UI is used to show information and enable the interaction with the data
set. Following use cases (UC) are to be covered in the prototype using the HHD’s touch
interface and its spatial capabilities:
UC1 The user moves the rendered virtual model to a suitable position on the room

and adjusts the rotation accordingly.
UC2 The user resizes the model to allow an optimal level of exploration.
UC3 The user uses the cutting function to clip away parts of the model and investigates

the internal structure.
UC4 The user freezes a cutting plane and can place another one to have a look from

multiple perspectives at the model.
UC5 The user saves interesting views by creating snapshots and places them in the

environment.
UC6 The user selects a captured slice, inspects it and its neighbours.
UC7 The user removes all snapshots from the virtual environment.
UC8 The user resets the model.
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3.4 Volumetric Data Sets
Volumetric data is defined as a set of samples which represent a value at a three-
dimensional location [43]. A sample can be defined as (x, y, z, v), whereas x, y, and
z indicate the cartesian position of the value v. The given value v can be binary or
multi-valued, meaning it describes certain properties of the given data such as its colour
or density.

3.4.1 Computer Tomography
Such three-dimensional data can be obtained as a sequence of 2D images using Mag-
netic Resonance Imaging (MRI) or Computer Tomography (CT). While CT is one of
the most accurate methods of image generation because thin image slices increase the
accuracy of the imaging, MRI uses thicker layers and therefore cannot achieve such
high accuracy [82]. MRI uses non-ionising radio frequency radiation and measures the
magnetic resonance of hydrogen molecules, which makes it more useful for recording
soft biological tissue [28]. CT, on the other hand, emits an X-ray beam and measures
its attenuation from multiple directions. It can scan any surface or material up to a
certain thickness and allows for a high density of information. The absorption of the
X-ray shows the density of the material which is scanned, though the X-ray photon
energy must be adjusted to penetrate thick objects or very dense material. An example
for a slice of a CT scan is shown in the lower part of figure 3.3 1. It shows how denser
material, such as the neck and head of the guitar, absorbs more rays and is therefore
shown in a lighter colour than thinner parts as seen on the wooden guitar body.

Figure 3.3: CT Scan of a concert guitar done by Research Group Computed Tomography.

When the scanned object consists of multiple materials with different density, the
scan might be difficult to execute as weaker materials cannot properly be recognised [28].
To allow the correct scan of such objects appropriate thresholds need to be identified

1https://www.3dct.at/cms2/index.php/en/ct/fields-of-application/140-special-applications
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and applied. As CT scans are a non-destructive method, they are used in industry to
inspect external and internal geometry of complex objects to detect flaws.

3.4.2 Rendering Techniques
Volumetric data is difficult to process, as the data sets are extensive and thus require
large memory capacities, and computing power. Therefore, they are often converted
into a simpler form to allow easier processing and display, faster calculations, and lower
memory requirements. [51, 75]. One way to reduce the size of a volumetric dataset is
to use a surface rendering technique [86]. Such a technique is used to approximate the
surface of the data set using geometric primitives, which can then be rendered.

A prominent method for extracting and rendering such surfaces is the Marching
Cubes Algorithm [54]. This algorithm uses an interpolation function to intersect edges
of the data in order to create triangle models. The defined surface then consists of
multiple triangles and is called iso-surface. The Marching Cubes Algorithm uses 14
topologies to differentiate between different parts of the layer. Each of these 14 cases
represents a generic set of triangles and thus allow to approximate any part of a surface.

The Marching Tetrahedra Algorithm is similar to the per cell approach of the March-
ing Cubes Algorithm, which marches a cube through the data set and creates faces by
interpolating between vertices [25]. In contrast to the Marching Cubes, Marching Tetra-
hedra splits this marching cube into six irregular tetrahedra which allows to calculate
intersections with nineteen instead of the twelve edges.

A mayor drawback of the surface technique, is the fact that the surface of the data
set can only be approximated if geometric primitives are used, while the data below the
surface is lost. Alternatively, volume rendering techniques are used. These create 2D
images directly from 3D volumetric data without the intermediate step of calculating
geometric primitives [86]. The inner structure of the data is not lost, though the size
can not be reduced as much as with the former method.

3.4.3 Prototype Data Sets
The prototype must be able to represent the surface of the three-dimensional object,
but also have the ability to retrieve parts of the object’s internal structure. It therefore
requires two separate data sets, one reflecting the volumetric data of the original dataset,
and a surface dataset representing a simplified surface:
Volumetric data set It contains all data acquired from the real world object and

is only needed when referring to the internal structure of the model. It is used,
for example, to calculate cutting surfaces, which can then be superimposed when
clipping the simplified model to visualise the complex internal structure.

Surface data set It is a simplified version of the original data set. A surface rendering
technique is optimal in this case as it enables the extraction of an approximated
surface model and leaves out the internal structure, which allows for a sizeable re-
duction in calculation time when rendering the data in a three-dimensional space.



3. Concept and Design 30

3.5 Interaction

As already covered by Mayer et al. [59], there are various intuitive ways of utilising a
touch-sensitive mobile device to investigate three-dimensional data in a Mixed Reality
Environment (MRE). Figure 3.4 shows how such inputs could be connected and put to
use. The starting point of the interaction concept is the main menu. From there, either
explorations or selection functions can be started, or changes to the model and the
user’s environment can be undone. In exploration mode, the user can perform inspection
methods with tap, swipe, and grab gestures. Selection mode, on the other hand, allows
the user to select an object, switching to selection mode, and adjust and reposition
it by shaking, tilting, touching, rotating, and pinching the HHD. The different input
possibilities and their structure are explained in detail in subsection 3.6.
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Figure 3.4: Diagram describing the different interaction states.
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3.5.1 Navigation
Lopez et al. state in their guidelines that users should have adequate means of navigation
and be able to move around the room freely [53]. Since the model is placed in the user’s
real environment, the user can freely move around the virtually presented object and
view it from different perspectives.

3.5.2 Spatial Transformation
According to the mentioned design guidelines [53], the prototype should support 7-DOF
(3-DOF translation, 3-DOF rotation, 1-DOF uniform scaling). These manipulations are
covered by the following methods for mapping, rotating and resizing the presented data.

Mapping

6-DOF interaction is allowed by mapping the position and rotation of the mobile device
to the virtual model. This way the object always has the same distance to the HHD
and follows the user to any given tracked space. In case the user wants to change the
distance to the object when mapping translation and rotation, the mapping mode has
to be restarted.

Rotation

In addition to the mapping option, the user has the possibility to explicitly rotate a
selected object by creating a rotational gesture on the tablet. This touch input enables
better performance in making large orientation changes than pure spatial input (such
as mapping), which is much more difficult to execute holding a tablet [58]. The touch
gesture requires at least two fingers to move on the touchscreen as seen in figure 3.5.
As Cohé et al. noted, users may use more fingers than necessary to perform a touch
gesture, so users should also be enabled to do so for this input [26]. The rotational input
allows the object to be yawed (rotated around the z-axis) when the touch-surface is held
horizontally, and rolled or pitched (rotated around the x- or y-axis) when the device
is held vertically. If the rotation is executed in a roll or pitch depends on the spatial
relation of the tablet to the respective object.
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Figure 3.5: Rotations can be executed using a twist gesture as depicted by Mayer et al.
[59].

Resizing

A virtual object or any chosen view can be resized by performing the common pinch
gesture on the touch interface of the HHD as shown in figure 3.6. This has also been
found to be the most expected gesture for this interaction in a formative study conducted
by Surale et al. [78].

Figure 3.6: The resizing of an object can be executed using a pinch gesture as depicted
by Mayer et al. [59].

3.5.3 Selection
There are multiple selection techniques which can be differentiated using several char-
acteristics. For fulfilling the requirements of this prototype, the taxonomy created by
Besançon et al. [5] (introduced in chapter 2) was used to choose a suitable selection tech-
nique. Taking into account that the user of this prototype has to execute basic single-
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object selection tasks without shape creation and adjustment, a simple ray metaphor
suffices.

Ray metaphors have the disadvantage of requiring the user to have a clear view
of the target. When following the taxonomy of Besançon et al., these characteristic
decisions leave the choice between Ray-Casting [61], Framing Hands [65], iSith [88],
Flexible Pointer [63] and SQUAD [44]. All of these techniques have at least 5-DOF for
the selection.

As the selection technique would best be executed using a tablet and avoiding ad-
ditional hardware (apart from an HMD and an HHD), bi-manual selections such as
Framing Hands and iSith are not suitable since the tracking of the hands is necessary to
execute these selection techniques even though Framing Hands allows a faster selection
and iSith even allows the selection of partially or totally occluded objects. The flexible
pointer must also track the user’s hand and arm movements and is therefore also not
suitable for the prototype. Although SQUAD selection is superior to conventional ray
cast selection in terms of accuracy, this is not necessary due to the intended scope of the
user’s virtual environment, which is to cover only the model and placed snapshots in
the user’s immediate vicinity. Further, SQUAD would complicate the selection of placed
snapshots compared to the simple ray cast selection. Bowman advises to rely on a ray
casting technique if speed is a requirement making ray cast selection the appropriate
technique for this prototype [17]. This technique works best with a posture in which the
arms are slightly bent. According to Hincapie et al. this position is the least strenuous
for the user’s shoulders and arms in terms of the gorilla-arm-effect [36].

To provide the user with an alternative selection option in case of occlusions, the
list selection proposed by Mine shall also be included as an indirect selection technique
in the prototype [61], similar to the slice gallery as implemented by Luo et al. [55].

3.5.4 Clipping
The removal or clipping of parts of an virtual object gives the user a new perspective
and provides a more thorough understanding of its internal structures. As previously
mentioned in chapter 2, the exploration of data sets with the help of cutting planes has
been implemented in multiple publications [15, 22, 33, 40, 67, 71, 76, 78, 80, 86]. While
most of those prototypes utilised a handheld device to interact with the presented data
set, only a fraction made use of a mobile tablet with touch-capabilities [40, 78].

Malizia et al. talk about the artificial naturality, which is currently conventional in
the design of natural interfaces [56]. Hereby they refer to the fact that specific gestures
must be learned rather than relying on familiar gestures used when interacting with real
world objects. When using a handheld tablet as a direct mean of cutting and displaying
the internal structure as the given point, we mean to break this artificial naturality and
cross over to intuitive, real naturality by allowing the user to interact with the object
as naturally as possible.

The HMD visualises the surface model in an virtual environment while the HHD
can be used to cut away parts of the data set. A clipping plane is positioned slightly
above the display and any part through which the HHD passes through is removed.
Simultaneously, the display is used to show the internal structure of the original data
at the exact position of the device within the model. Hereby the described naturality
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can be achieved as this concept allows the user to use the tablet as a type of window to
physically and virtually look into the displayed model.

As the clipping plane is positioned slightly above the display, the boundary of the
surface model will still be visible between the device and the virtual cutting plane (see
figure 3.7). Such a logic has already been implemented in a prototype of Bornik et al.
[15] which serves as an inspiration. This allows a more accurate evaluation using object
boundaries while the display shows the original volumetric data at the position of the
HHD.

Figure 3.7: The calculated volumetric cut is displayed on the tablet while the virtual
boundary of the virtual object (blue, visualised using the HMD) is still visible.

The position of the clipping plane can be frozen within the model by double tapping
the touch interface. This enables multi-planar slicing as several planes can be set within
the model, similar to Fröhlich and Plate, who implemented three cutting planes which
could be manipulated using the cubic mouse [33]. In place of the frozen cutting plane
the previously calculated slice of volumetric data is rendered to allow an inspection
without the creation of a snapshot. This can be seen in the following figure 3.8, where
the calculated internal structure is superimposed on the clipped part of the surface
model. As the HMD might not allow a satisfactory view on the tablet’s surface, the
intersection plane will be virtually superimposed in form of a monoscopic view over the
HHD.
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Figure 3.8: Clipped virtual surface model (blue) with frozen cutting planes displaying
the volumetric data superimposed on the clipped part.

3.5.5 Snapshots
When the mobile tablet is positioned within the surface model, the internal structure
can be calculated at this position from the original volumetric data set and displayed
on the device’s touch interface. This calculated slice can be saved by taking a snapshot.
The computation could potentially be intensive, so audio and visual cues are used to
inform the user that the calculation of the captured slice is in progress, thus confirming
the action [24, 37]. Such a snapshot can be created by placing it within the user’s envi-
ronment using a swiping gesture. This gesture can be designed naturally and compared
to tipping a ball or small object into a new place. The swipe direction, such as a flicking
direction of a ball, is used to calculate where the snapshot should be placed in the user’s
environment (see figure 3.9). The snapshot is rendered as a visualisation in AR, similar
to the virtual displays introduced in subsection 2.3 [62, 66].
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Figure 3.9: Snapshots are a momentary recording of a cutting slice and can be placed
in the user’s environment. The swipe direction tells the system in which direction the
snapshot should be placed.

A captured slice can be moved around the user’s environment, rotated, resized, or
removed. The position of the cutting plane where the snapshot was taken will be saved,
so the connection can be queried. To allow the user a view of the snapshots in the
virtual environment, the position of the tablet is used to align the orientation of the
snapshot views with the position of the user (such as Hubenschmid et al. implemented
in [38]). This proxemic method allows the user to move around the environment while
simultaneously always being able to view the placed images.

Alignment

As shown by Normand et al., the extension of a physical display by means of virtual
views is well accepted by users and can lead to an increased performance [62]. With this
in mind, the prototype should allow the user to align all taken snapshots around the
device by performing a grab gesture on the touchscreen (see figure 3.10). This allows
for a quick overview without requiring the user to look around the entire environment
where the snapshots would otherwise be placed.
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Figure 3.10: All snapshots are placed at specified locations in the user’s environment.
Occlusion is possible. The grab gesture triggers the alignment of existing snapshots around
the HHD.

Neighbour Views

Yang et al. presented the Tilt Map, a novel interaction technique which enables switching
between 2D and 3D visualisations by combining an HMD with a handheld controller
[89]. Hereby the tilt angle of the controller was used to switch between different views.
A conducted study showed that the tilt control was statistically more accurate without
a significant cost in time when compared to traditional techniques such as a side-by-side
comparison.

Following this publication and the recommendation to incorporate spatial triggers
by Hubenschmid et al. [38], we incorporate an intuitive tilting movement of the mobile
device to switch between a taken snapshot and its neighbouring slices. This interaction
possibility allows to inspect the data set along the z-axis next to the selected snapshot.
If tilted to the left, the clipping plane is moved forward on the z-axis, displaying the
internal structure of the model on this side of the snapshot. When the device is tipped in
the opposite direction, the calculation continues backwards on the z-axis. Boring et al.
propose to use a snapping behaviour when implementing a tilt movement [13]. Therefore
the user will be able to snap from one cutting plane to the next position instead of a
fluent transition which would be computationally more expensive.

3.6 User Interface
A publication describing a similar design and concept has been published by Surale et
al. in 2019 [78]. Other than this prototype, which was developed for the inspection of
volumetric data, they focus on 3D solid modelling. They found that holding the tablet
in the non-dominant hand can be tedious for the user, which is in line with the guideline
of Lopez et al. stating that holding the HHD up should be avoided as often as possible,
otherwise fatigue problems arise. Therefore, the UI of this prototype will be designed
to prioritise eyes-free interaction, which has also been proposed by Hubenschmid et al.
to guarantee a practical interaction [38]. This eyes-free menu is implemented in such a
way that touch commands are as simple and intuitive as possible, and the current mode
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of the application is clearly indicated by the objects or by an additional head up display
(HUD). The HHD should therefore only need to be raised when it is used to intersect
the model, to select or rotate an object, or to examine a snapshot and its neighbours. In
addition to visual feedback given over the HHD’s display or a superimposed virtual view,
the system can also give the user haptic and auditory feedback [24, 37]. The user can
directly interact with the system using the touch-display and entering gestures directly
on its surface or through spatial gestures by moving the device.

3.6.1 Main Menu
The interaction methods mentioned in section 3.5 can be summarised in the categories
selection and exploration, which allows the main menu to be designed bi-sectional,
offering one of these two as an option (see figure 3.11). The UI is divided into two
equally sized parts, one to enter the selection mode and one to enter the exploration
mode. As these buttons cover the entire surface, the user only needs to know which
option is on which half of the screen in order to make a selection. This allows the user
to make an eyes-free mode selection.

Figure 3.11: Bi-sectional menu parted into selection and exploration mode.

To reset all changes made, the HHD can be shaken multiple times in the main
menu. Shaking first removes all displayed snapshots in the user’s vicinity. If the user
then shakes again, the model is reset and returns to its original state, removing all frozen
cutting planes. All actions possible in the main menu are listed below in table 3.1
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Action Beforehand Description
Start Selection Mode - Tap the left side of the

screen (selection part).
Start Exploration Mode - Tap the right side of the

screen (exploration part).
Remove all snapshots Captured snapshots All snapshots can be re-

moved by shaking the
HHD multiple times
without a previous se-
lection.

Reset object Clipped object, no snapshots The virtual object can be
reset to its original state
by shaking the tablet
multiple times.

Table 3.1: Available actions in the main menu.

3.6.2 Selection Mode
The user can enter the selection mode when tapping the left part of the main screen
(selection part). This way the ray cast selection (described in 3.5.3) is activated. When
the ray hits an object, the user can use a double tap on the UI to confirm the selection.
If the selection was successful, the application should enter the selected mode. The
selected mode allows the user to execute spatial mapping (translation and rotation as
described in section 3.5.2) of the selected object while at least one finger is continuously
touching the screen. As soon as the touch stops, the mapping also stops. While an object
is selected, the touch interface can be used to perform a pinching gesture to resize the
selected object. The mode and selection can be terminated using an inward swipe as is
conventional with modern smartphones. As an additional spatial interaction, the user
has the choice to inspect neighbouring slices by tilting the tablet. An additional menu
can be opened by using three-fingers to swipe down the tablet’s surface. This menu
contains all taken snapshots and allows their individual selection. These interaction
options are listed in the following table 3.2.



3. Concept and Design 41

Action Beforehand Description
Select object with ray - Point ray at object and double

tap to confirm selection.
Select object with list - A grab gesture opens the object

selection list. An object can be
selected by taping on the object
in the list.

Map object Selected object As long as a finger continuously
touches the screen, the selected
object should mimic the motion
(translation and rotation) of the
HHD.

Rotate object Selected object Additonal to mapping, a rotation
can also be executed by perform-
ing a twist gesture on the touch-
sensitive surface using at least
two fingers.

Resize object Selected object The size of an object can be ad-
justed by performing a pinching
gesture on the screen.

Investigate neighbour slices Selected snapshot Neighbour slices of a snapshot
can be investigated by tilting the
tablet to the left or right to see
the slices further along the z-axis.

Remove snapshot Selected snapshot A selected snapshot can be re-
moved by shaking the HHD once.

End mode - Performing a swipe-in gesture
from the side of the handheld
tablet closes any mode and dese-
lects all objects.

Table 3.2: Available actions in selection mode.

3.6.3 Exploration Mode
The exploration mode is entered by tapping the right part of the main screen (explo-
ration part). In this case a clipping plane is automatically aligned with the HHD. The
user can start inspecting the internal structure of the model displayed using the HMD
by physically moving the HHD, and thus also the clipping plane, through the presented
data.

The clipping of the data happens as soon as the model is intersected with the cutting
plane, though the internal structure is only calculated after holding the HHD in place
for a short period of time. A double tap on the interface allows the user to freeze
the cutting plane. In this case, a new clipping plane is automatically created so the
user has the option to set multiple planes (see subsection 3.5.4). When inspecting the
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internal content of the data, a swipe on the interface allows the creation and placement
of a snapshot (as described in subsection 3.5.5). A line connects the snapshot with the
cutting plane placed in the exact position where it was taken. The user can exit the
exploration mode using a simple swipe-in gesture on the touch-sensitive surface of the
HHD. The following table 3.3 gives an overview over the introduced interaction options
which are usable in the exploration mode.

Action Beforehand Description
Clip object - Moving the clipping plane mapped

to the HHD through the model to
remove the parts that have been
passed through.

Freeze clipping plane Clipped object The cutting plane can be placed
within the model by double tap-
ping the screen when it is positioned
within the model.

Capture snapshot Clipped object An outward swipe into any direction
gives the direction in which a snap-
shot should be placed. A snapshot is
created when it is placed in the users
environment.

Align snapshots Captured snapshot All snapshot can be aligned around
the HHD by performing a grab ges-
ture on the touchscreen.

Remove all snapshots Captured snapshots All snapshots can be removed by
shaking the HHD once without a
previous selection.

Reset object Clipped object The virtual object can be reset to its
original state by shaking the tablet
multiple times.

End mode - Performing a swipe in gesture from
the side of the handheld tablet mul-
tiple times.

Table 3.3: Available actions in exploration mode.



Chapter 4

Implementation

This chapter gives an insight into the implementation of the prototypical application
created as part of this master thesis. First, section 4.1 describes the technologies used,
before section 4.2 gives an overview of the different types of data required. Section
4.3 describes the details of the implementation before the chapter concludes with the
limitations faced during the development (see section 4.4).

4.1 Technology

This section introduces the necessary hardware (subsection 4.1.1) and software (subsec-
tion 4.1.2) for the created prototype. The described hardware was used during most of
the implementation process, as well as for the preliminary study described in chapter 5.

4.1.1 Hardware
The prototype is composed of several different computational devices. A PC and a con-
nected Head Mounted Display (HMD) handle the Augmented Reality (AR) application
together with the main computing tasks. The user input for the system is provided via
a tablet and a tracking marker. The relationship between these devices and the user is
illustrated in figure 4.1.

43
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Figure 4.1: Interconnection between hardware devices and user.

HMD

This application uses an HTC Vive Pro Eye1 HMD with a Dual OLED 3.5 inch diagonal
display which provides 1440 x 1600 pixels per eye. It has a refresh rate of 90 Hz and a
field of view (FOV) of up to 110 degrees. It is equipped with tracking sensors, earphones,
a microphone, and front facing cameras which enable the usage of AR.

The HMD is paired with a SteamVR Base Station Tracking 2.02, which has a 120
degree FOV. These devices are used to pick up the tracking markers in a defined area
and keep track of changes to their position and rotation. Apart from an HMD, VIVE
trackers can be used to mark objects and places and keep track of their position in the
augmented or virtual environment.

1https://www.vive.com/us/product/vive-pro-eye/overview/
2https://www.vive.com/us/accessory/base-station2/
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PC

The PC is equipped with 16.0 GB RAM, an Intel®3 Core(TM) i7-10750H (2.6 GHz)
CPU, a NVIDIA4 GeForce RTX 2070 with Max-Q Design GPU and used the Intel®
Wi-Fi 6 AX201 (160 MHz) Wi-Fi adapter.

Tablet

As handheld device (HHD) a 10.36 inch tablet running Android 11 is used. It weighs 499g
and is equipped with a Samsung Celeron 3865U 1GHz processor and 4 GB RAM. The
device contains a Wi-Fi adapter, an accelerator, a linear accelerator, a gravity sensor,
as well as a gyro sensor.

Tracking Marker

A HTC tracking marker is fitted to the tablet to keep track of its position within the
user’s environment. The tracking sensor is mounted on a camera quick shoe, while the
tablet is framed by a tablet clip holder. The arm of the clip holder can be rotated
and adjusted to see fit for usage. The holder and the quick shoe are connected using a
specifically 3D printed connection part which can be seen in figure 4.2 and figure 4.3. It
is designed in a way that allows for the quick removal of the tracking device to charge
it.

Figure 4.2: The clip holder is
mounted on the back of the tablet,
only touching the top and bottom.

Figure 4.3: The connection part
(white) connects tracking marker and
tablet clip holder.

Tracking Space

The prototypical application allows the user to operate in AR. Apart from the above
listed hardware no more interaction objects are needed. Therefore, an empty environ-
ment which allows the user free, unconstrained movement is sufficient.

3https://www.intel.co.uk/content/www/uk/en/homepage.html
4https://www.nvidia.com/en-gb/
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4.1.2 Software
The system was implemented using a game development platform together with plugins.

Unity

The game engine Unity5, more specifically Unity 3D (version 2019.2.21f1), is used to im-
plement both the AR and the Android application. This real-time development platform
provides a physics engine as well as lighting and audio. The system’s behaviour can be
defined using the provided C# scripting API. The framework operates cross-platform,
is widely used, and its asset store offers several plugins. Projects can be enriched by
using such plugins to import objects, materials, shaders, and logical components. They
are also used to support Mixed Reality (MR).

SteamVR

SteamVR 6 (version 1.22.13) is used to power VR and AR, and is needed to connect an
HMD to a PC. It allows the user to setup the interaction area and serves to manage
the devices and their status. Additionally, a SteamVR unity plugin7 is integrated to
represent the Player prefab in the AR scene.

SRWorks

The SRWorks SDK 8 (version 0.9.7.1) is provided by HTC Coporation and enables the
see-through stereo camera view for HMDs such as the VIVE Pro or VIVE Pro Eye. Ac-
cess to the front-facing stereo cameras allows the display of depth, spatial mapping, and
the placement of virtual objects in the foreground or background. The prototype requires
this see-through functionality to enable AR for the HMD. For this to work, The SR-
Works plugin must be imported to the Unity application and the SRwork_FrameWork
prefab needs to be added to the respective AR scene.

4.2 Data
The prototype uses different formats of the same data set to allow its rendering and
exploration. Figure 4.4 shows how the data is processed in order to be used for the
prototypical implementation. First, the real world object9 is scanned using a CT scanner.
For the volumetric information, the data is then exported in form of two-dimensional
image slices, as explained in subsection 4.2.1. For the surface data, the information is
first transformed into iso-surfaces, before being exported as a mesh and simplified in
order to be rendered in AR, as described in subsection 4.2.2.

5https://unity.com/
6https://www.steamvr.com/en/
7https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
8https://developer.vive.com/resources/vive-sense/srworks-sdk/
9https://www.howtoheatpress.com/wp-content/uploads/2020/12/Best-Handheld-Sewing-

Machine.jpg.webp
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Figure 4.4: Data processing for its use for the prototype.

4.2.1 Volumetric Data

The data used for this prototype was created by the CT Research Group10 at the Wels
Campus of the Fachhochschule Oberösterreich. A handheld sewing machine was scanned
using the 225kV tube of a RayScan 150E11 CT system. The collected volumetric data
was then exported in raw format with a configured region of interest (ROI) in which
the size and material type of the sewing machine was tailored.

This volumetric data (see subsection 3.4) was inspected using myVGL 3.412, which
is a viewer application for three-dimensional data. It can be used to inspect the data
set and read information such as the resolution listed in table 4.1. First, the data was
inspected, then exported along the z-axis using captures every 0.2 mm resulting in 1,101
slices.

x y z
voxel dimension 453 653 1,767
dimension 𝜇m 56,407.1 81,310.91 220,025.1
resolution 𝜇m 124.5 124.5 124.5

Table 4.1: Resolution of the volumetric dataset.

MyVGL uses a left handed coordinate system; images how the data looks at specific
points can be seen in the following figures 4.5, 4.6, and 4.7.

10https://www.3dct.at/cms2/index.php/en/
11https://www.3dct.at/cms2/index.php/en/equipment/96-rayscan-en
12https://www.volumegraphics.com/en/products/myvgl.html
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Figure 4.5: Image of a slice along the x-axis of the volumetric data.

Figure 4.6: Image of a slice along the y-axis of the volumetric data.

Figure 4.7: Image of a slice along the z-axis of the volumetric data.
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The sewing machine consists of different materials which differ greatly in their den-
sity. The combination of different materials in an object can cause difficulties when
recording a CT scan, as described in the subsection 3.4.1. As can be seen very clearly
in the images above, materials such as steel, for instance in area of the batteries on
the left side of figure 4.5 and figure 4.6, strongly absorb the irradiated x-rays. While
they are recorded in a very bright colour, the surrounding material, which has a lower
density, is not captured as clearly as it is when the rays are not disturbed by higher
density materials. This difference in material and density causes parts of the scan to be
less sharp than others and the contours to blur.

4.2.2 Surface Data

For the three-dimensional model, the same raw file was imported to ImageVis3D13

(version 3.1.0) to create an stl file (Standard Triangle Language), which are commonly
used to describe the geometry of 3D surfaces. ImageVis3D is a volume rendering program
which offers iso-surface settings to adjust the iso-value for rendering. The iso-value is
a scalar value which is used to generate an iso-surface by stating which density values
are to be extracted. Since the sewing machine consists of several materials of different
densities, it is difficult to set a good boundary (iso-value) which separates the wanted
from the unwanted values. In any case, there is always one material that cannot be
properly distinguished. Figure 4.8 and figure 4.9 show how the object looks like when
the boundary is set too low or too high.

Figure 4.8: Object with the iso-value
chosen too low (12,533) showing distur-
bances on the surface.

Figure 4.9: Object with the iso-value
chosen too high (13,100) showing many
holes on the surface.

Due to the interference caused by the different densities of the materials, the model
must be manually adjusted to fill holes and smooth surfaces. When the boundary is
set too high, the model contains too many holes, while setting the boundary too low
results in too many disturbances in the model’s surface. The boundary should therefore
be chosen in a way to make the iso-surface as similar to the original as possible. The
dataset shown in figure 4.10 was rendered with an iso-value of about 12,900, which gave
the best result for all captured materials.

13https://www.sci.utah.edu/software/imagevis3d.html
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Figure 4.10: Selection of number of iso-surfaces using ImageVis3D.

The figure perfectly visualises how the combination of materials having different
densities impacts the result of a CT scan. In the back of the image on the left side,
there is a disturbance of the surface (original material plastic, low density) caused by
the batteries (original material carbon, lithium, and other metals, high density), located
within. The plastic cover area around the stainless steel coil in the middle of the machine
is also disturbed, which is most likely caused by both the coil and the motor of the sewing
machine.

The mesh was exported from ImageVis3D in form of an stl file. Due to the disrup-
tions, the data could not be used as the final three-dimensional model to be displayed in
the prototype. In a next step, the open source 3D content-creation program blender14

(version 3.2.0) was used to simplify the data and apply manual adjustments. It showed
that the extracted data contained 6,158,543 faces, which needed to be simplified to make
it easier to work with the data set. Blender’s decimate feature was used to reduce the
number of faces to 307,927, 5% of its original size.

As the surface of the model contained holes and showed great disruptions, it was
further edited manually. Faulty surfaces were replaced with planar surfaces, and leftovers
of the internal structure were removed completely. Removing the data below the surface
was necessary to properly render intersection planes on cut parts of the 3D object in
Unity. The simplified surface dataset was then exported as a mesh in form of an fbx
file. Fbx allows the usage of 3D models in multiple digital modelling programs, such
as Unity. It works with binaries and is therefore able to load data sets fast. The result
of the manual adjustments compared to the original with the deformed surfaces can

14https://www.blender.org
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be seen in figure 4.11. The left side holds the imported mesh with all disruptions and
holes. As can be seen in the figures on the right side, almost all surfaces needed manual
adjustment.

Figure 4.11: The images on the left side show the imported model from ImageVis3D. The
images on the right show the final data set after being simplified and manually adjusted
using blender.

The whole process of preparing the surface data for the prototype is done manually
and time intensive. The time for preparation depends on the experience with the required
programs of the person modifying the original data set as well as on the data set itself.
If the modifier knows the steps which need to be executed and the CT scan has a good
quality with few disturbances, the preparation process can be completed within one to
three hours. However, if the data set is more complex, or disrupted as was the case in
this thesis, the process takes multiple hours, if not days. Due to the lack of experience
with the required programs and the inferior quality of the CT scan, the preparation of
this surface data took multiple weeks.

4.3 Prototypical Implementation
The prototype consists of an Android and an AR application, which are responsible for
the input and output for and by the user. Since it is a matter of two applications working
together, the first subsection 4.3.1 deals with network communication. In the following
subsection 4.3.2, the various input options are explained in more detail before the dif-
ferent states which can be assumed by the prototype are outlined in subsection 4.3.3.
The implementation details conclude with an explanation of the different exploration
functions in subsection 4.3.4.
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4.3.1 Network Communication
The prototype implementation uses an Android application (client) deployed on the
handheld tablet and an AR application (host) running simultaneously on the PC. In
order for them to communicate with each other, the devices need to be connected to
the same local network. Information can be exchanged using this network by sending
different types of NetworkMessages. The abstract class NetworkMessage holds a Net-
workOperationCode which is used to identify the type of message and has been imple-
mented by other classes to enrich the messages with message type specific information.
The class diagram displayed in figure 4.12 shows the abstract class and all derived child
classes.

Figure 4.12: NetworkMessage and all derived message classes.

The information contained in the network messages needs to be serialisable, so only
small data packages are sent. The different derived classes listed above can be described
as followed:
ModeMessage Mode messages are used to communicate the mode change between

client and host. The message holds an integer which is used to identify the Menu-
Mode enum. The menu can either be None, Selection, Selected, Mapping, or Anal-
ysis.

RotationMessage Rotation messages hold the delta value of how far a twist has been
executed. The rotation can then be directly applied to the object.

ScaleMessage Scale messages are used to communicate the scale multiplier which can
be used to resize objects.

ShakeMessage Shake messages hold a count variable which tells the number of exe-
cuted shakes using the HHD.

SwipeMessage Swipe messages contain the information of the swipe angle, the swipe
direction (inward or outward), and the point where the swipe gesture ends.

TapMessage Tap messages are used to transfer which type of tap (single, double, hold
start, hold end) has been executed.



4. Implementation 53

TextMessage Text messages hold simple string values which are only used for debug-
ging purposes.

TiltMessage Tilt messages are used to communicate in which direction, left or right,
the HHD has been tilted.

The Host class and the Client class are responsible for receiving and sending these
messages. They establish the connection via the local network and handle all message
traffic and pass information to logical components.

Host

The Host class initialises the NetworkTransport in a method called in the Unity life cycle
method Start and then adds a host before connecting. After setting up the Network-
Transport, clients can connect to the host and send messages which can be received using
NetworkTransport.Receive. It is distinguished between three different kinds of events:
ConnectEvent, DisconnectEvent, and DataEvent. In case of a DataEvent, the Binary-
Formatter is used to deserialise the received information in form of a NetworkMessage.
The message is then processed in the OnData method which handles it according to its
NetworkOperationCode, calling any necessary actions. Apart from receiving, the host
can also send messages to the client using the SendClient method, which serialises the
messages with the BinaryFormatter and sends them with NetworkTransport.Send. Fig-
ure 4.13 shows a flowchart depicting the initialisation of the host application, as well as
the rough process of communication with the client application.
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Figure 4.13: The process of initialisation within the host class, as well as the sending
and receiving of network messages.

The host class transmits information to the client only after a reset or after a suc-
cessful selection. All other mode changes can be detected by the client when sending
input messages to the host, setting the new mode immediately.

Client

The implementation of the Client’s network communication is similar to the host’s,
which can be seen in figure 4.13. The main difference is that on connecting to the
NetworkTransport, the client passes the IP address of the host device (PC) instead of
the localhost IP address.

The SendServer method uses the BinaryFormatter to serialise network messages
which are then sent using NetworkTransport.Send to the previously connected host id.
Once messages are sent, they are checked for specific input which impact the client
application, such as inward swipes and hold events. This allows the client class to set
almost all prototype states through direct user input. The host only needs to inform
the client about a mode change when shakes have triggered certain actions or when a
selection was successfully executed.
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The UpdateMessagPump method is called in the Unity life cycle method Update
and used to check for received messages. Connection and disconnection events only
trigger a debug log information while a data event allows the client to process received
information. Again, the BinaryFormatter is used to deserialise received messages. The
client receives only text messages which are used for debugging purposes and menu
mode changes. The menu mode changes are needed to synchronise the host and client
application.

4.3.2 User Input
User input can be executed in various forms utilising the handheld tablet. Actions
regarding the tablet’s spatial and touch-sensitive capabilities can be directly used by
picking up movements and gestures. Indirectly, the position and rotation of the tablet
is monitored using a tracking marker attached to its back. Figure 4.14 shows how the
input recorded by the HHD is processed by the client application while the informa-
tion gathered by the tracking sensor is passed to the AR application. Eventually, all
input data is passed to the host class, which provides the information for the respective
interaction classes. They are then responsible for applying the input to the model.

Figure 4.14: Interconnection between main components and main classes.
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Spatial Input

The class SpatialInput is used to pick up and report actions such as the tilting and
shaking the HHD. The UnityEngine.Input class is used to access the accelerometer and
gyroscope data of the mobile device.
Shakes are detected using the Input.acceleration.sqrMagnitude property to compare

the acceleration speed with a threshold. If the set time interval is valid, the shake
counter is increased. A ShakeMessage is sent in case one or multiple shakes have
been recorded.

Tilt movements are detected using the Input.gyro property. This Gyroscope instance
holds the attitude of the HHD. When the device is tilted to the left or right in a
horizontal position the x-attitude changes. If this value exceeds a previously set
threshold, a TiltMessage is sent.

The accelerator and gyroscope may have varying sensitivities depending on the de-
vice. Therefore, if the client application is used on a different HHD, the thresholds for
shaking and tilting may need to be adjusted.

Touch Input

Touch and swipe gestures are being tracked using the TouchInput class. This class uses
the FingersLite repository15 of Digital Ruby, which supplies multiple classes built to
recognise specific finger based gestures. The GestureRecognizer class builds the basis for
the recognition of such input. For each input type there is a specific class derived from the
GestureRecognizer to track gestures. Following gesture recogniser can be differentiated:
TapGestureRecognizer is used to differentiate between single, double, and more tap

gestures. They are differentiated using a NumberOfTapsRequired property which
is compared to the counts of performed touches on the touch surface of the device.

SwipeGestureRecognizer is used to communicate executed swipes. The GestureRe-
cognizer can be used to query the start and end point of the swipe which can be
used to calculate its direction.

ScaleGestureRecognizer is used for callbacks about pinch gestures. The gesture
holds information about the scale multiplier which can be passed on.

RotateGestureRecognizer recognises performed rotational gestures and holds the
change in rotation radians.

LongPressGestureRecognizer informs about the begin and the end of a touch and
hold gesture.

For each possible gesture a respective GestureRecognizer instance is created and
callbacks are assigned. The recognisers are then added to a static FingersScript.Instance
which invokes the callback when the corresponding gesture has been detected. Gestures
can not be performed at the same time, apart from resizing and scaling which has been
specifically defined to allow simultaneous execution.

15https://github.com/DigitalRuby/FingersGestures/blob/master/Assets/FingersLite/
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Tracker Input

The position and rotation of the HHD is located using the tracking sensor mounted
on its backside. This data can be received using the SteamVR_TrackedObject script
which was added to a child gameobject of the SteamVRObjects gameobject, which in
turn is a child of the Player prefab used to manifest the user in the AR Unity scene.
The object tracking script allows to synchronise the movement of the tracking marker
with the virtual gameobject in the augmented environment. It therefore plays a central
roll for multiple interaction features. Most importantly, the data is used to position an
overlay quad in the AR scene to render images on top of the tablet screen to make up
for its insufficient resolution. Consequently, it is also used as a reference when aligning
snapshots around the tablet overlay, but is also needed when positioning a snapshot
as the initial position is relative to the position of the tablet. Positioned snapshots
also always look towards the user, which is pinpointed with the position of the HHD.
Additionally, the position and rotation of the tracker is important to find the intersection
between tablet and virtual object when performing cuts, or when synchronising the
movement of a selected object with the HHD.

4.3.3 Prototype States
As previously described in section 3.6 of the concept chapter, the user interface for
the mobile application of the prototype is structured and built in a way that requires
as little direct interaction (mode changes) as possible and consequently requires little
eye contact with the device. Therefore, the prototype has only four states (main mode,
selection mode, selected mode, exploration mode). The interconnection between these
modes, represented by their UI images, is shown in form of a state machine in figure
4.15.
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Figure 4.15: UI screens rendered in the different states of the prototype.

After a test run of the prototype with a new user showed that it is difficult for
beginners to remember all functionalities, visual hints were added to be displayed on
the tablet overlay. These should help the user to remember all available main functions of
the currently active state. Icons are used to help with a quick glance, while a description
is added in case the user has not internalised the different functions yet.

Main Mode

The application starts in the main menu, which offers two navigation options: The
selection mode and the exploration mode. When in the main menu mode, the user
can reset the augmented environment by removing snapshots with two shakes of the
tablet. If no snapshots can be removed the model is reset to its original state, meaning
frozen cutting planes are removed. These functions are illustrated in figure 4.16 which
is rendered as tablet overlay in the main mode.
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Figure 4.16: The main mode overlay depicts how a left tap starts the selection mode and
a right tap starts the exploration mode. In addition, the reset function, which is executed
using shakes, and the return functions are depicted.

Selection Mode

When the selection mode is started with a left tap, a ray is placed on top of the HHD.
This serves as an extension of the tablet and is synchronised with its movements. The
ray is equipped with the Selector script, which adjusts the colour of the ray in case of
a collision. All objects with the Selectable script (model and snapshots) can be selected
by a selector and react with a colour change when touched and selected (see figure
4.18). Selectable objects can also be frozen to prevent unwanted movement caused by
the touch of a rigidbody. When an object is selected, the mode automatically switches
to selected mode. If a swipe inward is detected the selection mode is cancelled and the
main mode is restarted.

Selected Mode

The main function of the selected mode is to move and adjust objects in the user’s envi-
ronment. Touch gestures are used to resize, rotate, and reposition the selected object. In
case the object in question is a snapshot, the snapshot image is displayed on the tablet’s
overlay surface. In addition, tilt movements can be used to calculate neighbouring slices
and inspect the model layer by layer. During any interaction the user can perform a
swipe inwards to exit the current mode and return to the main menu. Figure 4.17 shows
the overlay UI shown in the respective state.
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Figure 4.17: The left image shows the UI for the selection mode. During this mode the
user can either double tap when the selection ray is intersecting an object or return to
the main mode. The image on the right depicts some of the possible actions when the
selected mode is active. Not all possible actions are presented to allow a better overview.

The following figure 4.18 is based on the state machine displayed in figure 3.4,
and shows how these interactions affect the selected model or snapshot. The application
starts in the main mode which allows the reset of the model and environment by shaking
the HHD. If the user taps on the right side of the screen the selection mode is started.
If the selection ray intersects a valid object and the user double taps, the selected
mode is entered. When a snapshot was chosen, a shake removes it while a tilt starts the
neighbour inspection. Otherwise, a pinch gesture is used to resize any object (model and
snapshot), while a rotate gesture controls its orientation. A lasting long touch gesture
synchronises the position and rotation between model and HHD.
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Figure 4.18: Interactions when the user has entered the selection mode.

Exploration Mode

The exploration is opened by tapping the right side of the touchscreen in the main menu.
This mode focuses on the inspection of the internal structure of the three-dimensional
model. A cutting plane is automatically attached to the tablet overlay, slightly in front
of the tablet. This allows a part of the surface model to be visible between plane and
overlay. The user then has the option to freeze the cutting plane in its current position.
This triggers the calculation of the internal structure at the intersection using the origi-
nal data set. The calculated image is then rendered as a texture on top of the cut. If the
three-dimensional model should not be changed, the user can create a snapshot which
is positioned within the augmented environment. These snapshots can also be aligned
around the tablet to gather an overview. The main functionalities are depicted on the
exploration specific overlay screen, which is displayed in figure 4.19.
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Figure 4.19: The UI for the exploration mode only depicts the two main functionalities:
the cutting of the snapshot and the creating of a snapshot. The alignment of created snap-
shots has been left out for a better overview to focus on the main aspects of exploration.

How the described actions an be performed is shown by figure 4.20, which is based
on the state machine displayed in figure 3.4. The application starts in the main menu
which can switch to the exploration mode with a tap on the right side of the touch
interface. In this mode the model can be temporarily cut by intersecting it with the
HHD. A double tap then allows to freeze the cutting plane while an outward swipe
creates a snapshot. The swipe direction is used to calculate the position in which the
snapshot is positioned relative to the user. If snapshots are around, the user can perform
a grab gesture to align all shots around the tablet, or if this is already the case, put
them back to their original positions within the user’s environment.
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Figure 4.20: Interactions when the user has entered the exploration mode.

4.3.4 Data Exploration
The exploration features allow the user to inspect the stereoscopic dataset by querying
monoscopic data. The two-dimensional data enhances the information presented by the
surface data of the three-dimensional model. As the model rendered in Unity is a surface
model, it does not contain any internal information. This allows for a higher rendering
speed due to the smaller amount of data. Therefore, the internal structure must be
calculated and fetched from the volumetric dataset whenever the user interacts with it.
A sliceable object is a virtual object which can be explored by cutting off parts using the
so-called slicer. The slicer is an object used to define the parts which should be pruned.

Temporary and Permanent Cutting

To avoid unnecessary computational costs, the prototype only calculates the intersection
plane on explicit command of the user. For this reason, this prototype distinguishes
between temporary and permanent cutting.

Temporary slicing is done in real time and describes the way the slicing plane removes
parts of the 3D model when it is intersecting it. Upon removing the slicer from the object,
the previously removed parts reappear. The CrossSectionShader16 plugin17 is used for

16https://github.com/Dandarawy/Unity3DCrossSectionShader
17https://assetstore.unity.com/packages/vfx/shaders/cross-section-66300
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this effect. It was provided by Abdullah Aldandarawy but is now deprecated. It works
by adding the OnePlaneCuttingController script to the object which is supposed to be
cuttable, setting a slicer reference as its plane property. Both slicer and sliceable need to
have the CrossSectionShader specific shader OnePlaneBSP Shader set as their shader.
This way, if the slicer object intersects the slicable object, the shader stops rendering
all parts which are located before the plane.

The cutting plane with this slicer script has been positioned in a short distance
before the tablet overlay. This way a part of the surface model can be seen before the
intersected part is removed (see figure 4.21). As the tablet otherwise covers the model,
the displaying of the object’s borders helps to understand the position of the slicer
within the model. As the tablet is always positioned where the internal structure would
otherwise be shown, no intersection needs to be calculated, which makes temporary
slicing very fast and real time friendly.

Figure 4.21: The temporary cutting plane is positioned slightly before the tablet overlay.
This gives the user a visual hint of the surface’s current position and providing better
intuition of the tablet’s position within the model.

In contrast to temporary cutting, the permanent type modifies the three-dimensional
model permanently. The EzySlice project18 is provided by LandVr and used to generate a
new gameobject consiting only of the part of the 3D object not intersected by the cutting
plane. For this, the Slicer script, which is attached to the plane, and the SliceListener
script, attached to the model, are used. The SliceListener instance holds a reference of
the slicer object and sets its isTouched property when detecting an intersection using
the OnTriggerEnter method (see figure 4.22). When an intersection is detected and the
user double taps, setting the isTriggered property, the process of cutting the slicable
object is started.

18https://github.com/LandVr/SliceMeshes
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Figure 4.22: Class diagram of the Slicer and the SliceListener classes.

First, the intersection image is calculated (see subsection 4.3.4), playing a sound
to inform the user when the calculation has started. For this audio feedback a camera
shutter19 was used, as the output will also be an image. The calculation of such an
intersection is usually done within a few milliseconds. After the calculation, a SlicedHull
instance is created from the slicable, and used to create a gameobject which does not
contain the parts of the original gameobject which have been previously intersected. As
the dimension of the model is changed by cutting away a part, its collider also changes.
The collider box around the model needs to have the same dimension as the original
model, to correctly map this position back to the volumetric data. As the origin planes
of snapshots are saved in form of child elements, the trimmed object is then set as
the parent gameobject to these planes, allowing for the old model to be destroyed. To
prepare the model for additional slicing, the Selectable script, the SliceListener script,
and the OnePlaneCuttingController script are set to enable temporary and permanent
cutting. The CreateUpperHull method from the EzySlice project is used to create the
new trimmed slicable, and allows to set the material of the face which is set in the
position where the cut was performed. Figure 4.23 shows how the new object has set
the calculated intersection image at the position of the cut.

19https://freesound.org/people/kwahmah02/𝑠𝑜𝑢𝑛𝑑𝑠/260138/
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Figure 4.23: Example of a permanently changed model using the permanent cutting
functionality of the prototype. The intersected part has been removed and a material
containing the calculated volumetric data texture has been added to the intersecting
face.

Intersection Calculation

The calculation of the intersection plane and the resulting image is the point where
the prototype makes the connection between surface model data and volumetric data.
This calculation logic utilises multiple classes to find the intersection between plane and
model and calculate the information at this position using the data of image slices.

The Model class, shown in figure 4.24, reads all exported image slices from the
volumetric data and holds them in form of a bitmap array. In addition, the class also
has properties for the dimensions of the data set (xCount, yCount, zCount). These
properties and the data array are automatically initialised when a class instance is
created. The model class is used to get the intersection of a plane with the model and
also to query the intersection image from another class.

Figure 4.24: Model class with all properties and methods.
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To calculate a sectional image, the position of the intersection plane in relation to
the volumetric data set must first be determined. The model method GetIntersectio-
nAndTexture creates a ModelIntersection instance, which is a class used to calculate the
position of the plane within the model. This is achieved by positioning one object at
each corner of the cutting plane and moving it towards its centre until it touches the
collider of the model as can be seen in figure 4.25.

Figure 4.25: The section plane is shown in blue, while the points used to determine the
section boundary with the 3D object are shown in red. The left image depicts how the
points start at the edges of the plane and move towards its centre. In the right image the
points have stopped on colliding with the boundary of the slicable object.

It is therefore important to intersect the model through the centre of the plane,
otherwise the collider may not be found. As the contact points are set to be children of
the sliceable object, their positions can be normalised by adding half of the size of the
selectable to their position. The relative position within the volumetric dataset can be
calculated using the algorithm 4.1.

Algorithm 4.1: Calculation of the intersection points within the model data
1: 𝑚𝑜𝑑𝑒𝑙← model instance holding the dimensions of the volumetric data
2: 𝑠𝑖𝑧𝑒← size of the model collider
3: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠← touchpoints of the plane edges with the model collider
4: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑊𝑖𝑡ℎ𝑖𝑛𝑀𝑜𝑑𝑒𝑙← new List to return
5: for var 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑖𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠 do
6: 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑥← (𝑐𝑜𝑛𝑡𝑎𝑐𝑡.𝑧/𝑠𝑖𝑧𝑒.𝑧) *𝑚𝑜𝑑𝑒𝑙.𝑥𝐶𝑜𝑢𝑛𝑡
7: 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑦 ← (𝑐𝑜𝑛𝑡𝑎𝑐𝑡.𝑦/𝑠𝑖𝑧𝑒.𝑦) *𝑚𝑜𝑑𝑒𝑙.𝑦𝐶𝑜𝑢𝑛𝑡
8: 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑧 ← (𝑐𝑜𝑛𝑡𝑎𝑐𝑡.𝑥/𝑠𝑖𝑧𝑒.𝑥) *𝑚𝑜𝑑𝑒𝑙.𝑧𝐶𝑜𝑢𝑛𝑡
9: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑊𝑖𝑡ℎ𝑖𝑛𝑀𝑜𝑑𝑒𝑙← 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

As can be seen in this algorithm, the x and z values are switched. Unity uses the
left handed coordinate system, while myVgl works with the right handed coordinate
system. As the surface data is computed using Unity, while the volumetric data for the
internal structure has been exported from myVgl, the x- and z-axis need to be changed
to avoid errors.
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The relative contact points are then passed on to the GetIntersectonPlane method
which returns the final intersection image together with the coordinates of the plane.
First, an instance of SlicePlane is created, which is used to establish the link between
the position of the plane within the model and the model itself. To do this, the class
PlaneFormula is set to calculate the equation of the plane using the algorithm shown
in algorithm 4.2. Even though the retrieval of the intersection points provides four
coordinates, only three are required and used to calculate the plane formula.

Algorithm 4.2: Calculation of the plane
1: 𝑝𝑜𝑖𝑛𝑡1← first of the intersection points
2: 𝑝𝑜𝑖𝑛𝑡2← second of the intersection points
3: 𝑝𝑜𝑖𝑛𝑡3← third of the intersection points
4: 𝑎1← 𝑝𝑜𝑖𝑛𝑡2.𝑥− 𝑝𝑜𝑖𝑛𝑡1.𝑥
5: 𝑏1← 𝑝𝑜𝑖𝑛𝑡2.𝑦 − 𝑝𝑜𝑖𝑛𝑡1.𝑦
6: 𝑐1← 𝑝𝑜𝑖𝑛𝑡2.𝑧 − 𝑝𝑜𝑖𝑛𝑡1.𝑧
7: 𝑎2← 𝑝𝑜𝑖𝑛𝑡3.𝑥− 𝑝𝑜𝑖𝑛𝑡1.𝑥
8: 𝑏2← 𝑝𝑜𝑖𝑛𝑡3.𝑦 − 𝑝𝑜𝑖𝑛𝑡1.𝑦
9: 𝑐2← 𝑝𝑜𝑖𝑛𝑡3.𝑧 − 𝑝𝑜𝑖𝑛𝑡1.𝑧

10: 𝑎← 𝑏1 * 𝑐2− 𝑏2 * 𝑐1
11: 𝑏← 𝑎2 * 𝑐1− 𝑎1 * 𝑐2
12: 𝑐← 𝑎1 * 𝑏2− 𝑏1 * 𝑎2
13: 𝑑← (−𝑎 * 𝑝𝑜𝑖𝑛𝑡1.𝑥− 𝑏 * 𝑝𝑜𝑖𝑛𝑡1.𝑦 − 𝑐 * 𝑝𝑜𝑖𝑛𝑡1.𝑧)

The result values (a, b, c, d) are then be inserted into the plane equation 4.1

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (4.1)

to check if a point lies on the plane.
After setting up the plane formula, the edge points of the cutting plane can be

calculated within the volume data. For this, the x, y, and z values of each possible
edge point are inserted into the formula. If the result is 0, the point lies on the plane,
otherwise it does not. Once the edge points of the intersection have been determined,
the width and height of the cutting image can be derived and this information can be
used to determine the step size between the pixels.

Once the SlicePlane instance has been created, which also validates, that the in-
tersection can be done, the model instance calls SlicePlane.CalculateIntersectionPlane
which is described in algorithm 4.3.

The algorithm iterates through the bitmap with the size of the new image and
calculates the value for each pixel. The image values can be calculated using either
the nearest neighbour interpolation, bi-linear interpolation, or none. Nearest neighbour
rounds the x and y position of the value within the original image which leads to
inferior quality of the result image and visible edges as neighbouring values are not
taken into the calculation. Bi-linear on the other hand takes adjacent pixel values into
consideration, interpolating them and utilising a delta value. While it achieves a better
image quality than the nearest neighbour interpolation, it also requires more calculation
and is therefore slower. During the development of the prototype, the nearest neighbour
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Algorithm 4.3: Calculation of the intersection image
1: 𝑝𝑙𝑎𝑛𝑒← holds all the information about the plane
2: 𝑚𝑜𝑑𝑒𝑙← holds the model pixels in form of a bitmap array and its dimensions
3: function CalculateIntersectionPlane(𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡)
4: 𝑟𝑒𝑠𝑢𝑙𝑡𝐼𝑚𝑎𝑔𝑒← 𝑛𝑒𝑤𝐵𝑖𝑡𝑚𝑎𝑝(𝑝𝑙𝑎𝑛𝑒.𝑊𝑖𝑑𝑡ℎ, 𝑝𝑙𝑎𝑛𝑒.𝐻𝑒𝑖𝑔ℎ𝑡)
5: 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡← 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡𝑖𝑓𝑛𝑜𝑡𝑒𝑚𝑝𝑡𝑦, 𝑤𝑒𝑙𝑠𝑒𝑝𝑙𝑎𝑛𝑒.𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡
6: 𝑐𝑢𝑟𝑟𝑉 𝑒𝑐𝑡𝑜𝑟1, 𝑐𝑢𝑟𝑟𝑉 𝑒𝑐𝑡𝑜𝑟2← 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡
7: for 𝑤 ← 0, 1, . . . , 𝑝𝑙𝑎𝑛𝑒.𝑊𝑖𝑑𝑡ℎ do
8: 𝑐𝑢𝑟𝑟𝑉 𝑒𝑐𝑡𝑜𝑟1← 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 + 𝑤 * 𝑝𝑙𝑎𝑛𝑒.𝑋𝑆𝑡𝑒𝑝𝑠
9: for ℎ← 0, 1, . . . , 𝑝𝑙𝑎𝑛𝑒.𝐻𝑒𝑖𝑔ℎ𝑡 do

10: 𝑐𝑢𝑟𝑟𝑉 𝑒𝑐𝑡𝑜𝑟2← 𝑐𝑢𝑟𝑟𝑉 𝑒𝑐𝑡𝑜𝑟1 + ℎ * 𝑝𝑙𝑎𝑛𝑒.𝑌 𝑆𝑡𝑒𝑝𝑠
11: 𝑐𝑢𝑟𝑟𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐵𝑖𝑡𝑚𝑎𝑝← 𝑚𝑜𝑑𝑒𝑙.𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐵𝑖𝑡𝑚𝑎𝑝[𝑐𝑢𝑟𝑟𝑉 𝑒𝑐𝑡𝑜𝑟2.𝑥]
12: 𝑟𝑒𝑠𝑢𝑙𝑡← value of 𝑐𝑢𝑟𝑟𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐵𝑖𝑡𝑚𝑎𝑝 using 𝑐𝑢𝑟𝑟𝑉 𝑒𝑐𝑡𝑜𝑟2[𝑧, 𝑦] for inter-

polation
13: 𝑟𝑒𝑠𝑢𝑙𝑡𝐼𝑚𝑎𝑔𝑒 set 𝑟𝑒𝑠𝑢𝑙𝑡𝑣𝑎𝑙𝑢𝑒 at position 𝑤, ℎ
14: return 𝑟𝑒𝑠𝑢𝑙𝑡𝐼𝑚𝑎𝑔𝑒

interpolation could calculate the intersection within a few milliseconds, while the bi-
linear method was more noticeable and took sometimes up to a few seconds. As the
computation time is important for this prototype, the nearest neighbour interpolation
was set to be the default method.

The described method CalculateIntersectionPlane accepts an alternative start point
which is used for calculating neighbour slices of snapshots (see subsubsection 4.3.4).
This way the same method can be reused, as the plane stays the same and only moves
a step along the main axis.

After the calculation has finshed, the method returns the intersection image which is
passed on by the model method GetIntersectionPlane along with the plane information.
There, the image is saved to the file system using a bmp and a png format. The png file
is then loaded again in form of a Unity Texture2D which can be added to any material
as a main texture.

Snapshots

Snapshots are momentary recordings of the tablet position within the three-dimensional
dataset. They visualise the internal structure at the position of their capture while also
saving the position of their origin.

The Snapshot class holds information for its positioning, rotation, origin, and the
plane information for the calculation of its intersection image. The properties Viewer
and IsLooking are used to allow the object to always be visible to the user. The viewer
property holds the position of the HHD, so the LookAt method can be used to make
it always face the user. As a snapshot can be pulled towards the tablet and rendered
parallel to the screen, the position in the user’s environment needs to be saved to allow
for the object to be returned when they are no longer needed around the HHD. When
a snapshot is created the cutting plane is copied and saved as an inactive child object
of the slicable model. The snapshot holds a reference of this copied plane, which is
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activated whenever the user inspects the object. Along with the intersection image, the
shot also saves the PlaneCoordinate instance to be able to later calculate neighbouring
slices without having to recalculate the intersection part.

The SnapshotInteraction class is used to handle all interaction requests concerning
snapshots. When the host receives a swipe outward message, it is used to call the
HandleSnapshotCreation method. The swipe angle is passed along to determine the
position of the snapshot relative to the position of the user. The calculation of the
position using the angle of the swipe direction is described in algorithm 4.4.

Algorithm 4.4: Calculation of the snapshot position
1: ℎℎ𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛← position of the HHD
2: 𝑐𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛← −90
3: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← configurated value of distance between HHD and snapshot
4: 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛← ℎℎ𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛.𝐴𝑛𝑔𝑙𝑒𝐴𝑥𝑖𝑠(𝑠𝑤𝑖𝑝𝑒𝐴𝑛𝑔𝑙𝑒+ y rota-

tion of HHD +𝑐𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑐𝑡𝑜𝑟3.𝑢𝑝) * 𝑉 𝑒𝑐𝑡𝑜𝑟3.𝑏𝑎𝑐𝑘 * 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

The position and rotation of the HHD can be read using the tracking marker, while
the distance between HHD and snapshot can be set in the configurations. The swipe
angle is received on notification of a swipe event from the client and uses the AngleAxis
method to calculate the position relative to the user. The height of the HHD is adapted
while the x and z values depend on the calculation.

When a snapshot is created, the intersection image is loaded and set as its texture.
In addition, the current position of the HHD is saved to the OriginPlane property, while
a plane is created in its position. This origin plane is always deactivated and only gets
set to visible when the snapshot is selected.

To allow a fast alignment of all snapshots a static approach has been chosen. Five
deactivated planes are positioned around the tablet overlay. Their position and scale is
used to place the snapshots in their place as can be seen in figure 4.27. In addition, the
tablet overlay is set as their parent so that all movements and rotations are automatically
applied to them. To allow the repositioning in their original place, the position and scale
is updated in the snapshot instance before aligning them. They can be used to undo
the alignment if needed, as seen in figure 4.26.

Figure 4.26: All snapshots are posi-
tioned in the user’s environment.

Figure 4.27: All snapshots are aligned
around the HHD.
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The neighbour inspection is a layer by layer approach which allows the user to in-
spect how the intersection image would look if the snapshot was places slightly deeper or
not as deep in the object compared to its actual position. The original plane coordinates
of the selected snapshot are used to create a SlicePlane to call the CalculateNeighbourIn-
tersectionPlane method and pass the direction of the inspection. The direction is given
by the side of the tilt recorded by the host. A leftward tilt sets the snapshot deeper
into the model, while a rightward tilt moves the plane backwards into the intersected
area. The axis along which the movement is done is calculated using the start point. It
is controlled if it is an edge value of either the x-, y-, or z-axis. The start point is then
shifted along the movement axis and handed as an alternative start point to the Cal-
culateIntersectionPlane method which handles the creation of the intersection image.
The result image and the plane coordinates with the new start point are then handed
back to the SnapshotInteraction. A temporary snapshot is created and displayed on
the tablet overlay, with its origin plane, which is now shifted. The shift performed with
the starting point within the volumetric data now needs to be translated to the AR
environment as described in algorithm 4.5.

Algorithm 4.5: Calculation of the new origin plane position
1: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡− 𝑛𝑒𝑤𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡
2: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝐾𝑒𝑦 ← 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑀𝑜𝑑𝑒𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠/𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑜𝑑𝑒𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
3: 𝑜𝑓𝑓𝑠𝑒𝑡← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝐾𝑒𝑦 * 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 *𝑚𝑜𝑑𝑒𝑙𝑆𝑐𝑎𝑙𝑒
4: 𝑛𝑒𝑤𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛← 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃 𝑙𝑎𝑛𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡

The conversion of the step size from the volumetric dimensions to the surface di-
mensions is done by first getting the size of the jump between the slices, subtracting
the new start point from the original one. A dimension key is calculated by dividing the
dimensions of the data set in AR by the dimensions of the data set of the volumetric
data. The offset can then be calculated by multiplying this conversion key with the step
size along with the scale factor. The scale factor is important as the model could have
been resized.

The new position of the neighbour’s slice origin plane is then set using the sum of
the previous origin plane and the calculated offset. When the neighbour inspection is
cancelled using a swipe in gesture, the temporary snapshots and their origin plane which
are again children of the model, are removed.

Figure 4.28 shows how the temporary snapshot image is displayed on the tablet
overlay at the bottom of the image. The origin plane is rendered intersecting the model
on the right side. As the neighbouring slice is displayed on the tablet, it can be held up
to compare it to the original slice, which is positioned in the central background of the
following figure.
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Figure 4.28: The neighbour slice is shown on the tablet overlay instead of the selected
snapshot which allows a direct comparison to the original snapshot.

4.4 Limitations
In the course of the design and implementation of the prototype a number of limitations
were encountered.

4.4.1 Hardware
The development of the prototype was finalised using the hardware described in section
4.1. This setup had a varying performance between 45 and 90 frames per second (FPS).
In addition the resolution of the used HMD did not suffice to be able to read and
recognise text and images displayed by the tablet. This limitation could be worked
around using a more high resolution HMD, such as the Varjo XR-320 which offers 1920
pixel per eye for the focus area.

4.4.2 Network
When working with two connected applications, the main focus lies on the network
traffic. As the client connects to the host devices using its IP address, both devices need
to be connected to the same network. In addition, the host device must also deactivate
its firewall, as a connection is otherwise not possible.

4.4.3 Touch based input
In contrast to the design mentioned in the concept, it was not possible to implement
touch gestures with more fingers than required. Therefore, the grab gesture can only be

20https://varjo.com/products/xr-3/
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performed with two fingers and is strictly speaking a pinch gesture. Also, the rotational
gesture can only be performed using the necessary two fingers and does not work when
more fingers touch the screen.

4.4.4 Frozen cutting plane
When using the shader plugin OnePlaneBSP, cutting planes can be dispatched and
therefore appear as frozen. As the prototype enables the user to place multiple cuts,
other planes can be positioned. Due to the shader attached to the planes, previously
removed parts could reappear. To avoid this, parts needed to be removed permanently,
changing the object. Therefore, frozen cutting planes cannot be edited, the whole object
would need to be reset. The shader plugin is now used for temporary slicing, as it requires
only one slicing plane.

4.4.5 Intersection orientation
Calculating a cut within the volumetric data does not allow the user to cut across edges
only. The plane needs to be positioned in a way, straight or angled, that cuts the model
in its whole height, length, or width. Figure 4.29 visualises how only full cuts can be
made.

Figure 4.29: The blue intersections described on the left side show valid positions for
the cutting plane. The plane intersects the object completely. The red intersections seen
on the right are invalid because the positions never completely cut an entire axis.

4.4.6 Cutting plane position within model
The position of an object within another object is hard to find within Unity. Even when
using collision points, the position within the object is not exact and often wrong. As
Unity offers no such functionality, a workaround was used. A child object was positioned
on each edge of the cutting plane and moved towards the centre of the plane until they
collided with the intersecting entity. This way the outside of the collider could be found.
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Because of this workaround, the cutting plane has to be positioned in a way, that the
model lies in its centre. Otherwise the moving edge points might miss the collider box
of the model.

4.4.7 Calculation format
The slices of the volumetric dataset were stored in a bitmap. The bitmap is not native
to Unity, but is provided by System.Drawing and had to be imported using an rsp file.
The bitmap was then also used to save the calculated cutting planes, but could not
be converted into a Unity texture because converting a bitmap causes Unity to crash.
Therefore, the file had to be saved in the file system and loaded separately. Since the
LoadImage method of Texture2D only supports certain types, the byte files loaded from
a bitmap file could not be displayed. Therefore, the calculated intersection was saved
in the form of both, a bitmap and a png file, with the png file being loaded to use as a
texture for the intersection.



Chapter 5

Evaluation

The aim of this master thesis is to find out how to enable the user to intuitively interact
with and explore three-dimensional data using a handheld device (HHD). A user study
is conducted to evaluate the prototype, find its weaknesses and strengths, and discover
possibilities of improvement. The first part of this section (subsection 5.1) describes
how the user study was conducted, gives an overview of the participants and evalua-
tion structure, before going into detail about the results. The section concludes with
subsection 5.2, discussing the findings and possible improvements.

5.1 User Study
The user study was carried out to determine which interactions and functions of the
prototype and the concept are easy, intuitive, or difficult to use and understand. In
addition, it was to be determined to what extent a tablet can be used as an input device
in an augmented environment and which functionalities are perceived as supportive
when interacting with 3D objects.

5.1.1 Design
The design of the study was created in a way to allow the user to understand the basic
principles and functions of the prototype before interacting with it. It was divided into
three parts: The introduction, where the idea of the concept was explained and basic
information about the subject was collected. The interaction part, consisting of a short
tutorial followed by letting the user interact with the prototype. Finally, a questionnaire
and an interview were used to collect the users’ impressions and opinions about the
concept and the application.

Introduction

The study started with the users being made aware of their data protection rights
and were asked to sign a respective paper (see appendix B). The study was conducted
in Japan where the Act on the Protection of Personal Information (APPI)1 is used to

1https://www.ppc.go.jp/en/
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protect the data of private individuals. Similar to the APPI, the General Data Protection
Regulation (GDPR)2 is used in the European Union to protect the private data of
individuals. Since 2019, there is a standing adequacy decision between Japan and the
European Union 3, meaning they recognise each other’s data protection laws as providing
adequate protection for personal data. On the basis of these mutual respect for each
others laws, the participants of this study were informed about their rights under the
GDPR.

After the data protection formalities, the participants were first introduced to the
general concept of the prototype and asked to fill in a small questionnaire about their
person, followed by questions about their previous experiences with Mixed Reality, 3D
Models, and touch-sensitive handheld devices.

Prototype Usage

The introduction was followed by the main part of the study, in which the test persons
could familiarise themselves with the prototype and use it. This phase lasted between 30
and 50 minutes. The users were introduced to the concept and features of the prototype
in a small tutorial. First, the structure of the menu was described before short videos on
how to use the prototype were played. Questions from the participants were answered
immediately and the videos could be played as often as desired. This part lasted between
15 to 20 minutes, depending on how fast the presented functionalities were understood.

After this basic walk through the participants could use the prototype in the course
of guided instructions. The users were asked to perform the following tasks while being
guided by an instructor which gave comments and support along the execution of the
asked commands:

• Task 1:
– Rearrange the model in the augmented environment by adjusting its position,

rotation, and size.
• Task 2:

– Create snapshots and position them in the augmented environment.
– Align all existing snapshots around the tablet and compare them. Put them

back at their original position.
– Select a snapshot as a starting point and investigate the model layer by layer

browsing through its neighbour slices.
• Task 3:

– Freeze the cutting plane at a specific point within the three-dimensional
model, effectively cutting it.

• Task 4:
– Remove all taken snapshots.
– Reset the model.

2https://gdpr.eu
3https://ec.europa.eu/commission/presscorner/detail/en/IP19421
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The instructions covered all available functionalities and took the test subjects be-
tween 10 to 25 minutes. After the participants had completed this part, they were free to
explore the prototype further on their own. Assistance was provided when users forgot
a command or asked for help. To give them another task, all participants were asked to
find the batteries in the model. The test subjects could explore the prototype as long
as they chose, which was between 5 to 8 minutes in average.

Questionnaire and Interview

After using the prototype, participants were asked to fill in a questionnaire and take
part in an interview. The User Experience Questionnaire (UEQ)4 was used to gain a
comprehensive impression of the user experience. It uses 26 pairs of attributes describing
the product to measure its usability (attractiveness, dependability, efficiency, perspicu-
ity) and user experience aspects (novelty, stimulation). Each item of the questionnaire
consists of a pair of aspects, the positive aspect and the opposite, and a seven-level
gradation in between as displayed in figure 5.1.

Figure 5.1: Example of a pair of aspects and the seven-level gradation which the test
subjects can choose from.

In order to get a more detailed insight into the participants’ feelings about the use
of the prototype and the interaction possibilities, the study was completed with a semi-
structured interview. This interview form allows to divert from the guiding questions
(see appendix B) and adjust the direction of the interview depending on the answers
of the participant. It allowed the interviewer to refer to observations made during the
prototype usage part while always being able to go back to the main line of questioning.
These questions address the general usage of the prototype, including the handling of
the HHD, and specifics about the usage of different features.

5.1.2 Environment
The study was executed in a computer laboratory at the Iwate Prefectural University
(IPU)5. It offered an open space of 2.5m x 2.3m, which gave the participants enough
space to move around and interact with the prototype (see figure 5.2).

4https://www.ueq-online.org/
5https://www.iwate-pu.ac.jp/en/
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Figure 5.2: Real world environment in which the study was conducted.

5.1.3 Participants
This preliminary study focuses on the design evaluation, therefore a qualitative study
investigating the usage of the prototype using a test population holding five persons
was deemed sufficient to make qualitative measurements. The test population consisted
of four men and one woman, aged between 23 and 32 years. Three out of the five par-
ticipants needed eye correction and wore their prescribed glasses during the execution
of the study. Four test persons were students, one was a research assistant. Every par-
ticipant had previous experience handling touch-sensitive tablets, three had used 3D
modelling for multiple years, but only two persons had thorough experience of using a
Mixed Reality Environment (MRE).

5.1.4 UEQ Results
The data analysis tool provided by UEQ was used to evaluate the input generated by
the users. As it uses a seven point grading system the grading ranges from -3 meaning
horribly bad to +3 meaning extremely good. The following results use these grades to
rank the different items and aspects. The mean is calculated leading to the result being
over +2 or below -2 to be unlikely due to the different opinions and grading tendencies
of the individuals. Every mean over 1.5 is seen as good.

The results of the questionnaire were summarised into six main scales (attractiveness,
dependability, efficiency, novelty, and perspicuity). The diagram in figure 5.3 which
visualises the mean rating per scale, shows that the prototype was rated positively in
every aspect. The grey bars illustrate the mean rating of the scales, which are all in the
positive range above 0. The median (and mean) of five out of six scales lie above 1.5
which can be interpreted as a very good result.
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Figure 5.3: Diagram cumulating the mean of all ratings grouped the main scales.

The table displayed in figure 5.4 shows how the aspect efficiency has the highest
answer variance (1.86), directly followed by perspicuity (1.46). The stimulation (0.38)
and novelty (0.39) aspects on the other hand, have the least rating variance.

Figure 5.4: Mean, median, variance, and standard deviation of the ratings by scale.
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If the scaling factors are broken down to the 26 individual items, there are only 3
items in total which have a mean value below 1. The speed of the prototype has the
worst mean rating with 0.2, followed by it being described as complicated with 0.6. It
also was only described as leading edge with a mean of 0.8. Extremely positive items
were the attributes good (2.6), interesting (2.6), understandable (2.4), and motivating
(2.4).

Answer Distribution

Figure 5.5 shows the distribution of the responses of the study participants in relation
to the attribute pairs. Test subjects were able to rate the use of the prototype by
choosing a gradation between a pair of attributes (e.g. conservative and innovative).
The attribute pair consists of two opposing items, one of which is a positive description
of the prototype, the other is not. The attributes on the left side are used for the negative
description and all ratings tending towards them are coloured in a reddish tone (1-3).
The attributes on the right side of the diagram are used for a positive description and
ratings which tend towards them are shown in a greenish tone (5-7). The grey ratings
show those ratings which tend towards neither attribute.

The figure shows, that all ratings lean into a positive direction. However, some
answers are somewhat divergent. Two items, unusual and leading edge, and slow and
fast, clearly stood out as they each had one very negative rating and otherwise only
neutral and positive ratings. The attribute pair slow and fast for example was rated by
one user as completely slow (1), by one as completely fast (7), by one as rather fast (5)
and the remaining two participants felt it was neither (3).

The difference in opinion regarding the rating of the slow and fast item which is
depicted in the diagram explains why the efficiency scale has the highest overall variance
compared to other scales.
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Figure 5.5: Diagram visualising the answer distribution. The values 1 to 7 correlate
directly with the rating values -3 to +3.

Benchmark

The UEQ data analysis tool contains data of 21.175 products from 468 studies con-
cerning different products. These are used as reference values to compare the results of
the evaluated product to. As these reference products come from different backgrounds,
such as business software, web pages, and social networks, this comparison only allows
conclusions about the relative quality of the prototype.

Comparing the mean of the different scales, table 5.1 shows how the mean of this
evaluation is always placed within the top 50%, most often even the top 10% of all
evaluations.
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Scale Mean Comparison Interpretation
Attractiveness 1,97 Excellent In the range of the 10% best results
Perspicuity 1,60 Above Average 25% of results better, 50% worse
Efficiency 1,20 Above Average 25% of results better, 50% worse
Dependability 1,55 Good 10% of results better, 75% worse
Stimulation 2,25 Excellent In the range of the 10% best results
Novelty 1,65 Excellent In the range of the 10% best results

Table 5.1: Comparison of the prototype to other products in the benchmark.

Figure 5.6 puts the result of the prototype in relation to the 21.175 other products
provided by the benchmark analysis. The coloured areas indicate the values of the other
products. It shows that the average of the products is always above or equal to 0.5, for
example. The calculated mean values for this prototype are always placed above average.
The mean of effectiveness being the lowest rating scale for the evaluated prototype and
the stimulation scale being the highest rated scale.

Figure 5.6: Diagram showing how the mean grading of the prototype always lies in the
top half of all recorded product ratings.

5.1.5 Individual Feedback
This subsection summarises the semi-structured interviews conducted with each test
subject after the usage of the prototype. The duration of the conversations ranged
from almost 17 minutes to about 25 minutes each. The questionnaire, which collected
demographic and experience data, showed that all participants had previous experience
in using touch-sensitive tablets. However, only 3 out of 5 participants knew their way
around 3D models, and only 2 people had basic prior experience with Mixed Reality
(MR) applications and devices.

Participant 1

Participant 1 (P1) is currently a Ph.D. student who’s research focuses on image pro-
cessing. P1’s vision was corrected to normal. P1 had worked with 3D models for several
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years, but had little to no experience with MR applications. Although P1 thought the
tablet was a good control, it felt heavy over time. Unlike the other participants, P1
chose to use the prototype while seated, positioning the model fairly high at chest level
as can be seen in figure 5.7.

Figure 5.7: P1 seen in a seated position. The monitor in the background shows the
exploration mode is currently active.

P1 stated both, the function to freeze a section plane and the function to take
snapshots, were important to get insights into the inner structure of the 3D model. The
tablet allowed easy spatial mapping, intersection with the 3D model resulting in frozen
section planes or snapshots, and alignment of such created snapshots. P1 mainly worked
with snapshots, but they were perceived as to be positioned too far away. Therefore,
the alignment function was often used to get a closer look. Up close, the resolution of
the internal data image and Head Mounted Display (HMD) was poor and P1 stated the
combination made it difficult to see details. Of all the functions, slicing the model was
most preferred as it helped to capture the internal information best in combination with
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the 3D object. The neighbourhood function, on the other hand, was hardly used because
P1 perceived the change between the neighbouring slices as not large enough to be easily
visible. Furthermore, due to the small step size, the direction in which the inspection
plane moved was not understandable. As P1 initially had difficulties understanding the
prototype and memorising the different functions, it was suggested to integrate a tutorial
into the prototype and give him the possibility to play videos. It was also proposed to
give the user the possibility to adjust the step size of the neighbourhood inspection to
make it more comfortable.

Participant 2

Participant 2 (P2) is currently a master student who’s research focuses on information
technology security on hardware devices. P2’s vision was corrected to normal. P2 had a
lot of experience with virtual environments and several years of practice in 3D modelling,
and stated that all the controls were understandable and intuitive. Compared to the
mechanical controllers which are commonly used to interact in an MRE, the touch con-
troller felt innovative with its haptics and offered more interaction variety. For example,
the creation of snapshots, which felt unique in its functionality. This and the alignment
function were often used to keep track of the layout of the object. The slice neighbour
inspection feature was also useful, although a step size calibration option would have
been beneficial. When comparing the cutting and snapshot functions, cutting was found
to be more helpful in understanding the internal structure, while snapshot provided ad-
ditional information with respect to the unaltered external surface. While the rotation
function was hardly used because it sometimes seemed confusing, mapping, snapshots,
and alignment were the most popular features. P2 suggested highlighting the outline of
the model in the snapshot to provide better contrast and also providing some kind of
measurement information to inform about the dimension and scale of the model and
the snapshots.

Participant 3

Participant 3 (P3) is working as a research assistant, researching image processing of
ultra sound images. P3 had a normal eye vision and had no need for eye correction. The
participant had three years of experience modelling three-dimensional data, but was not
familiar with AR. P3 was the only participant who said that the tablet felt unnatural and
the prototype required "too much interaction". While the weight of the HHD was fine, an
"easier" interaction, such as the usage of hand recognition, was expected rather than the
chosen tangible approach. While the rotation and resizing functions were predictable,
the mapping would have been expected to move the object upwards when the tablet was
rotated upwards, rather than synchronising the rotation. P3 explained, while freezing
snapshots helps to understand the internal structure and is a preferred method to view
the object and its interior from different angles, snapshots require much more interaction
and are therefore less convenient. Apart from the instructional part, snapshots were
therefore not used in the free exploration mode. In general, the cutting function was seen
as beneficial, as conventional 3D programmes require additional actions to be explored,
in contrast to the prototype. Nevertheless, the sense of the prototype, based on the use
of a touch-sensitive and spatially capable tablet as a controller, was felt to involve too
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much movement and general interaction. The use of eye contact and hand recognition
was expected. It would have felt more natural to grab the 3D object with the hand to
reposition it or cut it with a "knife"-like gesture. Neighbourhood inspection would also
have been easier if the user could grab the origin plane of the selected snapshot and
move it within the object instead of having to tilt the HHD.

Participant 4

Participant 4 (P4) is a bachelor student who studies information systems and has normal
eye vision with no need for correction. P4 had no previous experience with Augmented
Reality (AR) or 3D models. However, P4 quickly became familiar with the handling of
the prototype and later stated that it was very well structured and comfortable to use.
Nevertheless, the weight of the tablet was felt to be acceptable for short-term usage, but
it could become heavy over time. In addition, it was not always easy to hold, e.g. when
performing the turning movement, the hand position had to be changed to keep the
HHD steady. Freezing the cutting plane was preferred to taking snapshots because in
3D the changes can be seen from all sides and the object looks "almost real". P4 said, "It
felt good to cut something in reality. It was exactly how I would do it in real life. It didn’t
feel like it was not in reality." Although freezing the cutting planes was preferred, the
snapshot function was also thoroughly explored. The placement of snapshots in relation
to the direction of the swipe was found to be intuitive, although P4 sometimes confused
swiping inwards with swiping outwards when working with snapshots or returning from
a mode. When aligning all snapshots around the tablet, the HHD had to be held far
away from the body to see all images as can be seen on figure 5.8. One thing which
was special for P4 was that the position of the snapshots could still be changed after
the initial placement and the selected snapshot was displayed on the HHD. Overall,
P4 enjoyed the prototype and was impressed with the cutting and snapshot actions,
which gave the impression of real interactions. It was suggested to cut the model at the
position of the origin of a snapshot when it was selected. When deselected, the model
could return to its original shape. This would help to see a better connection between
the 2D image and the 3D model.
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Figure 5.8: P4 holding the HHD with one arm stretched out to inspect aligned snapshots
around the tablet.

Participant 5

Participant 5 (P5) is currently a Ph.D. student with a focus on the usage of handheld
tablets which utilise stereoscopic methods. P5’s vision was corrected to normal. P5
had no previous experience modelling three-dimensional data, but had already used
Virtual Reality (VR) applications for several hours. P5 felt that using a tablet as a
controller is very useful and a lot of time could be spent with it in a comfortable
position without it being too heavy. One point which has always bothered P5 about
VR has been that everything looks real but didn’t feel real. Conventional controllers,
for example, are alienating because they don’t feel organic. The tablet, on the other
hand, felt like a shape which P5 was used to, and it helped make the cutting feel
more realistic, like the user could actually interact with an object. Cutting the 3D
model felt very intuitive, "almost like using a knife". Comparing freezing the cutting
plane with creating snapshots, the latter felt more like guessing and checking, which
is why the former was preferable. The creation of snapshots was perceived as strange,
as it required the user to take their eyes off the model. Nevertheless, the connection
between 2D and 3D was easy to understand due to the positioned origin plane for each
respective snapshot. The neighbourhood inspection feature was used a lot and although
it was good to step through the 3D object, it felt very "snappy". In general, P5 felt using
the prototype was "very interesting" as similar technologies were known from movies or
similar research and it was "cool to interact with it". It was asked whether the bimodal
menu could be merged, as the separation into exploration and selection did not seem
necessary.
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5.2 Discussion
The conducted user study was preliminary, using only five participants for the evalu-
ation, meaning to collect first impressions and finding aspects about the concept and
design of the prototype to improve. Overall, the feedback about the prototype and its
different functionalities was very good, and many different opinions and suggestions
could be collected. This section discusses all these findings, first summing up the in-
formation collected by the UEQ before going into detail of the individual opinions of
all test subjects collected during the interview part, ending with the discussion about
possible improvements.

The results shown by the UEQ were excellent and always above average when com-
paring it to other products, though it has to be kept in mind the used benchmark
compares the prototype to different types of other applications only allowing a con-
clusion about its relative quality. From all items, it was described the most as good,
interesting, motivating and understandable.

Besides all the positive findings, the UEQ results showed the prototype could be
faster. This might be due to the used hardware which can easily be exchanged. In
addition, some participants perceived the prototype as complicated. Comparing this
point with the statements made in the interviews, it is clear this refers mainly to the
beginning of the use of the prototype. The operations became clear after they had the
chance to explore the prototype themselves.

The answer distribution of the UEQ showed, a divergence of opinions on the items
"leading edge" and the fastness of the prototype. This can be explained by the pre-
vious experience with MR applications and 3D modelling the respective participants
had. While people who had experience working with such objects might perceive the
prototype as slow, amateur users might not feel the same way. Same can be explained
with leading edge, though only one person did perceive the prototype as usual while all
other leaned into the leading edge direction.

Going more into detail about the different opinions collected during the interviews
helped explaining some of the tendencies displayed by the UEQ results.

The usage of a handheld tablet as means of interaction was generally well accepted.
4 out of 5 participants liked the HHD as an input device for an AR application. They all
said it is good, though 2 of the 4 felt it gets heavy after some time. The one person (P3)
not agreeing, stated that the HHD did not feel natural, and would have preferred less
interaction and the use of hand recognition allowing the grabbing of virtual objects. This
feeling could be due to the fact that this test person had the least experience (3 months)
with the handling of a tablet and was not yet familiar enough with it as an input device.
Apart from the criticism, two participants (P2, P5) who already worked with virtual
environments stated, they preferred the tablet for such interactions over the conventional
mechanical controllers, as it has a familiar shape, allows tangible interaction, and feels
more realistic and natural.

From all interaction features, three test subjects (P1, P3, P4) stated they preferred
the freezing of the cutting plane the most. It made the interaction feel "real" and help
understand the object more than any other feature. Nevertheless, it was said the snap-
shots as well as the cutting of the object are important to understand and explore the
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3D model. The context of queried two-dimensional data (snapshots) in form of an origin
plane, was clear to all participants.

5.2.1 Suggestions
Apart from the positive feedback calling the prototype "understandable" (P2), "realistic"
(P4, P5), and "intuitive" (P2, P4, P5), there were many points for improvement. One
which was mentioned by four test subjects (P1, P2, P3, P5) was the movement of the
origin plane of the snapshot when inspecting neighbour slices. This plane is moved using
tilt gestures, though it was noted, the jump between the neighbours is not big enough.
Therefore, it should be adjustable, allowing the user to configure the step size.

It was also mentioned that the resolution of the intersection images is lacking and
the prototype is slow, which has already been picked up by UEQ. These issues could
be addressed by using different hardware. A PC with a stronger graphic card and an
HMD with better resolution might be able to solve this point of criticism. Concerning
hardware, as already mentioned two participants felt like the tablet might get heavy
with time. As seen in subsection 4.1.1, the prototype uses a combination of tracking
device strapped to the HHD to determine its location in the tracking space. To get
rid of some weight, this tracking device could be removed and the position determined
using image recognition, making the HHD lighter.

Another issue mentioned by two participants (P1, P2), was the snapshot colour,
which is too dark and the object surface, which should be highlighted. This was only
perceived by these two test subjects, as the snapshots are programmed to always look
at the user (billboarding). This way the user can move around the environment while
the snapshots always face them. Unfortunately, the position of the light source within
the AR scene can lead to shadows being applied to the planes depending on their angle.
This is a good point to improve the visualisation of snapshots.

One participant stood out in comparison to the others when mentioning, that the
prototype requires too much interaction using the tablet and wished for hand gestures.
This could be a possible addition to the prototype. In subsection 2.4.1, a brief overview
of mid-air gestures was given. Some of its drawbacks, such as the lack of tactile feedback,
could be avoided when using it in combination with a touch-sensitive tablet. In this case,
the use cases of the hand interactions need to be weight carefully. When using hand
gestures, the tablet is only held in one hand, which might cause additional problems
due to its weight. Therefore, the combination of gestures in the air and touch gestures
on an HHD might be best suited when using a smaller HHD. This should allow some of
the benefits of touch gestures, such as tactile feedback, while allowing the user to use
the second hand for mid-air movements without the HHD being too heavy.



Chapter 6

Conclusion

The focus of this master thesis lies on the interaction with volumetric data and how
to design it in such a way that is both natural and easy for the user to handle. The
research conducted has shown that three-dimensional objects can be explored well by
allowing the user to open the model and take a look at its internal structure. This can
be done by removing parts of the object and thus exposing its insides. Taking snapshots
is also a good way to store information about certain parts for later viewing.

While there are many different input devices, only a few of them allow the user
to perform such actions in a natural way. Usually, conventional mechanical controllers
are used for any interaction in Augmented Reality (AR). These can feel alienating and
unnatural and do not offer intuitive control for the mentioned explorations. Mid-air
gestures, on the other hand, are not designed to be used over a long period of time and
lead to fatigue (gorilla-arm-effect). Compared to other devices, the use of a handheld,
touch-sensitive tablet showed the most advantages in terms of the use cases. In addition
to tactile feedback, it is capable of spatial and touch based input as well as output. It is
an off-the-shelf device that is easy to hold and use and is already integrated into many
people’s lives and has therefore become a familiar form. Furthermore, its shape allows
it to be used in a tangible way that mimics a cutting plane when interacting with the
three-dimensional object.

The created prototype, which uses such a handheld device (HHD), was tested as
part of a small user study. As discussed, the prototype implementation received mixed
feedback, most of which was positive. Revisiting the posed research questions, has shown
that the design and implementation of the proposed concept makes the retrieval and
comparison of information of a data set understandable. The usage of a spatially aware,
touch-sensitive HHD with an attached cutting plane to explore three-dimensional data
was perceived as realistic and intuitive. It was well accepted by the bigger part of the
participants, although some changes can be made with regards to its total weight. The
connection between the three-dimensional data and the two-dimensional exploration
data was experienced to be comprehensible by all participants. However, the information
obtained in this study is not sufficient to draw statistical conclusions. They merely
show that the concept is going in the right direction and give suggestions as to where
improvements are still needed.
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6.1 Outlook
Conducting the user study has helped to identify some points in the concept of this
prototype that could be improved. However, since the study was carried out with only
five test subjects, it would be particularly interesting to conduct another study with
more participants and better hardware. Apart from this, there are several points that
could complement the prototype well. As mentioned by several users, it would be ben-
eficial if the user could manually configure the step size between slices when iterating
through the neighbourhood information of a snapshot. Image capture and processing
could be added to track the position and rotation of the tablet. This would allow the
tracking sensor to be removed, reducing the weight of the HHD and making it more
manageable. Moreover, it would enable the addition of mid-air gestures, as suggested
by one participant. The point of collaboration, which was defined as a non-target in
this master thesis, could also become interesting in the future. In addition to multiple
users working on the same model, inspecting a number of models simultaneously could
also be beneficial. Two or more models could be positioned next to each other and cut
in the same places to compare them.
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List of Acronyms

AR Augmented Reality
BMP Bitmap
CPU Central Processing Unity
CT Computer Tomography
DOF Degrees of Freedom
FBX Filmbox
FOV Field of View
FPS Frames per Second
GPU Graphics Processing Unit
GUI Graphical User Interface
HHD Handheld Device
HMD Head Mounted Display
HUD Head Up Display
MR Mixed Reality
MRE Mixed Reality Environment
MRI Magnetic Resonance Imaging
PC Personal Computer
PNG Portable Network Graphics
RAM Random Access Memory
ROI Region of Interest
RSP C# Compiler Response File
SDK Software Development Kit
STL Standard Triangle Language
VR Virtual Reality
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Information according to Article 13 GDPR 
 
The protection of personal data is of particular concern to us. We therefore process personal data 
exclusively in accordance with the provisions of the General Data Protection Regulation (GDPR) and 
applicable national legislation. In this overview, we provide information about the most important aspects 
of data processing. 
 
Purpose of data processing 
The aim of the preliminary study is to test various interaction possibilities with three-dimensional data 
using a touch-sensitive tablet in augmented reality. The following data will be collected from data subjects 
and subsequently processed: 

• Demographic data 

• Answers to standardised questionnaires 

• Answers to oral questions 

• Video and audio recordings of the study conducted 

• Screen recordings of the augmented scene of the study conducted 
 
Rights of data subjects 
In the area of scientific or historical research purposes or statistical purposes, exceptions to the rights of 
data subjects may be provided for under Article 89(2) of the GDPR and Section 2d(6) of the Research 
Organisation Act (FOG), insofar as the achievement of research purposes is likely to be rendered impossible 
or seriously impaired. 
 
We inform you of the right to lodge a complaint with the Austrian Data Protection Authority, Barichgasse 
40-42, 1030 Vienna, telephone: +43 1 521 52 - 2569, e-mail: dsb@dsb.gv.at as the local supervisory 
authority or with the otherwise competent supervisory authority (e.g. of the place of residence or place of 
work) in accordance with Article 77 GDPR.  

Contact details for questions regarding data protection:  
Janine Mayer 
Softwarepark 11, 4232 Hagenberg, Austria 
Janine.Mayer@fh-hagenberg.at 
 

 I agree that a non-anonymised image of me from the recorded video material may be published in 
scientific publications  

 
I confirm with my signature that I have read and understood the information above. 
 
 
_______________________________ ____________________________________________ 

Place, Date Signature 

 

 ____________________________________________ 

 Name 
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Preliminary Study 
Volumetric Data Interaction 

 
The purpose of this preliminary study is to evaluate the functional prototype which has been created in the 

course of a master thesis. This prototype uses Augmented Reality (AR) to visualize a three-dimensional 

data set in the user’s environment. The use of a spatially aware, touch-sensitive handheld tablet allows for 

manipulation and exploration of said data set. The prototype is developed in a way which allows minimal 

eye contact with the input device to avoid arm fatigue. 

 

Purpose 

• Identifying interactions and manipulations which are intuitive or hard to use. 

• Finding which features are easy to understand and which are not. 

• Finding weaknesses and strengths in the design of this prototype. 

 

Structure 

This user evaluation is separated into multiple parts and will take up to one hour.  

Part 1 Introduction and demographic questionnaire 5 minutes 

Part 2 Prototype usage  

a. Introduction & Tutorial 8 minutes 

b. Exploration using instructions 12 minutes 

c. Free exploration 10 minutes 

Part 3 Follow up questions  

a. Questionnaire about the usage 3 minutes 

b. Semi-structured Interview 20 minutes 

 

Information about study risks 

The usage of a Head Mounted Device to show Augmented Reality may lead to discomfort. If you feel 

unwell, dizzy, or simply do not want to continue with the study please tell the person in charge. The 

participant can leave this study at any time without consequences. 
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Part 1 - Questionnaire 

Name  

Age  

Gender O female                O male              O other              O do not disclose 

Need of eye correction O yes                       O no           

Use of eye correction O yes                       O no           

Colour vision deficiency  

 

Have you had any previous experience using an AR application?  O  Yes O  No 

If yes, how long, please describe:  

 

 

 

Have you had any previous experience using a touch-sensitive tablet? O  Yes O  No 

If yes, how long, please describe: 

 

 

 

Have you had any previous experience exploring 3D data? O  Yes O  No 

If yes, how long, please describe: 
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Part 2 – Prototype Usage 

The prototype was designed in a way to allow the user to interact with and explore three-dimensional data 

in augmented reality. The spatial and touch-sensitive capabilities of the handheld tablet allow the user to 

perform such operations.  

 

The study course is designed in a way to allow the user to explore the different functionalities step by step. 

After going through these functionalities together, the participant is free to explore the model using the 

prototype further if wanted. 

 

Part A – Introduction 

First the general prototype is introduced, followed by short videos which display the usage of the different 

available features. 

Tutorial available here: 

https://docs.google.com/presentation/d/19bP3DuU_p4yXLniWSFz4XfeaMjKH1Ve6/edit?usp=sharing&oui

d=116127959025007089702&rtpof=true&sd=true 

 

Part B – Instructions 

1. Rearrange the model in your environment by adjusting its position, rotation, and size. 

2. Create snapshots and position them in the room. 

a. Align the snapshots around the tablet and compare them.  

b. Select a snapshot and investigate its neighbours (layer by layer). 

3. Cut the model at specific positions. 

4. Remove all objects and reset the model. 

 

Part C – Free Usage 

Please manipulate and explore the dataset now in a way you want. Feel free to use any feature you 

learned before. You can take as long as you want. Try to understand the model. 
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Part 3 – Questionnaire & Interview 

Please assess the prototype by filling out the following questionnaire. This questionnaire consists of pairs 

of contrasting attributes that may apply to the product. The circles between these attributes represent 

graduations between the opposites. Please express your agreement with the attributes by ticking one 

circle per line that most closely reflects your impression. 
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Semi-structured Interview 

This semi-structured interview will be recorded in order to best understand and evaluate the 
answers of the participant. 

Introduction 

How did you like the usage of the prototype? (Intuitive, bothersome, complicated …) 

How did you perceive the tablet as a mean of interaction with the two- and three- dimensional data? How 
did you like using touch- and spatial input to interact with the model? 

Have you felt any discomfort while using the prototype? Tablet (fatigue, uncomfortable)? 

Have you had any trouble executing an action? Did any interaction do something different than expected? 
E.g., did you expect a swipe to do something different than a double tap 

Object Manipulation and Removal 

How was the handling of the object in general? Has everything worked as expected? 

Slicing the 3D Object 

How was using the tablet as a cutting plane? (Intuitive, weird, easy)? Did you always know where the 
cutting plane was? 

Did cutting away parts of the prototype help understand the internal structure? 

Snapshots 

How was creating snapshots? Was the positioning when creating helpful, confusing, hard? 

Did the snapshots help understand the internal structure of the 3D model? 

Did aligning and misaligning help comparing the snapshots, or did you prefer the snapshots in your 
environment? 

Did the visualisation of the snapshot origin within the 3D model help understand the connection between 
model and snapshot?  

Did you always know which part of the model was concerned when investigating a snapshot? 

How did you like the inspection of snapshot neighbours? (Easy, intuitive, hard, confusing) Did it help to 
understand the internal structure? 

Conclusion 

What did you like most? (Why?) 

What did bother you most? 

What do you think is lacking to enhance these interactions? 
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